Proposed Academic Standards for Mathematics

Introduction 2
The Three Shifts in Mathematics Instruction 2
Effective Teaching Practices 5
Content Standards 6
Standards for Mathematical Practices 6
How to Read the Standards 8
Standards for Mathematical Practice: Grades K-5 10
Kindergarten 14
First Grade 21
Second Grade 29
Third Grade 38
Fourth Grade 49
Fifth Grade 61
Sixth Grade 76
Seventh Grade 88
Eighth Grade 99
Standards of Mathematical Practice: High School 109
Mathematics Standards for High School (Algebra I, Geometry, Algebra II) 112
Algebra I 120
Geometry 136
Algebra 2 148
Mathematics Standards for High School Elective Courses (Statistics, Precalculus, Calculus) 166
Statistics and Probability 166
Pre-Calculus 177
Calculus 190
Glossary. 202
Appendix: Works Consulted 210

Introduction

The Iowa Academic Standards for Mathematics outline the knowledge, skills and understandings that students should know and be able to do as a result of instruction and learning experiences in mathematics. As with any set of standards, they need to be rigorous; they need to demand a balance of conceptual understanding, procedural fluency and application, and represent a significant level of achievement in mathematics that will enable students to successfully transition to post-secondary education and the workforce.

These revised standards are not new ways to do the same old things. Instead, they are an opportunity to learn from the lessons since the last standards adoption and to clarify language and past misconceptions. Great attention and care were taken to preserve the previous structure of the standards. This structure can be thought of as a DNA strand that contains smaller components but when taken apart, does not work very well as isolated parts.

There is a mathematical story that unfolds across kindergarten through high school standards. In order for that story to be told and for students to benefit from it, great care should be taken to spend instructional time on the content that makes the biggest difference for students while still maintaining the coherence throughout each grade level, unit and lesson. This can be thought of as watching a television series. If one were to watch the episodes in random order, the story would not make much sense. Mathematics works the same and it is not enough to engage in activities around the standards. Each lesson must connect to the previous and future lesson and thus, each unit to each unit and each grade level to each grade level. When this is done using the standards for mathematical practices, students will become competent problem solvers and be able to communicate reasoning.

There are four main components to the lowa Academic Standards for Mathematics:

- The Three Shifts in Mathematics Instruction
- Effective Teaching Practices
- Content Standards
- Standards for Mathematical Practice

The Three Shifts in Mathematics Instruction

The Shifts in Mathematics are three principles which are specifically called out, not as more standards, but as a way to support an understanding of how the standards are different and provide a framework for teaching the standards. The Shifts provide a frame that describes how these standards raise expectations across multiple areas of students' educational experience including instructional materials, classroom practice, and assessment. The Shifts illustrate how standards contribute to transformative changes in the classroom that will better prepare students for opportunities after high school.

The Shift of Focus: The first shift requires a focus on major work of each grade level. Rather than racing to cover topics in a mile-wide, inch-deep approach, Iowa Academic Standards for Mathematics require us to significantly narrow and deepen the way time and energy are spent in the mathematics classroom. We focus deeply on the Major Work of each grade so that students can gain strong foundations: solid conceptual understanding, a high degree of procedural skill
and fluency, and the ability to apply the math they know to solve problems inside and outside the math classroom.

A greater emphasis is placed at a cluster level (groups of related standards). It is when students are proficient at the cluster level in each grade that a student is best positioned to be successful in future grades. Clusters are defined as major, supporting or additional work of the grade.

Major Work: Students should spend the large majority of their time on the major work of the grade. At least 65% and up to approximately 85% of class time should be devoted to the major work of the grade.

Grade Band/Level	Highlights of Major Work in K-12
K-2	Addition and subtraction - concepts, skills, and problem solving; place value
$3-5$	Multiplication and division of whole numbers and fractions - concepts, skills, and problem solving
6	Ratios and proportional relationships; early
7	Ratios and proportional relationships; arithmetic of rational numbers
8	Linear equations and linear functions equations
Algebra 1	Modeling with linear, quadratic, and exponential equations and functions
Geometry	Modeling with congruence and similarity
Algebra 2	Modeling with polynomial and rational equations and functions

Supporting Work and, where appropriate, Additional Work can engage students in the major work of the grade.

It is important to attend to the Major Work in K-8 because it sets the foundation for high school algebra readiness. Not all content in a given grade is emphasized equally in the Standards.
Some clusters require greater emphasis than others based on the depth of the ideas, the time
that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. More time in these areas is also necessary for students to meet the Standards for Mathematical Practice.

To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting material will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade.

The Shift of Coherence: The second shift requires coherence both within grade levels and across grade levels to ensure students have a logical mathematical progression. lowa Academic Standards for Mathematics are designed around coherent progressions from grade to grade. Learning is carefully connected across grades so that students can build new understanding onto foundations built in previous years. Each standard is not a new event, but an extension of previous learning.

Instead of allowing additional or supporting topics to detract from the focus of the grade, these concepts serve as the grade-level focus. For example, instead of data displays as an end in themselves, they are an opportunity to do grade-level word problems.

Mathematics is a set of connected topics; it is a coherent body of knowledge made up of interconnected concepts. Therefore, the Standards are designed around coherent progressions from grade to grade. Learning is carefully connected across grades so that students can build new understanding onto foundations built in previous years.

The Coherence Map shows the connections between Standards for Mathematics.
The Progression Documents for Mathematics explain why standards are sequenced the way they are, point out cognitive difficulties and pedagogical solutions, and give more detail on particularly knotty areas of mathematics. The Progressions Documents for Mathematics also provide a transmission mechanism between mathematics education research and standards.

The Shift of Rigor: The third shift provides clarity on the level of rigor needed to work with mathematical concepts. There are 3 levels of rigor:

- Conceptual understanding: Students must be able to access concepts from a number of perspectives so that they are able to see math as more than a set of mnemonics or discrete procedures.
- Procedural skill and fluency: Fluency is defined as the ability to apply procedures efficiently, flexibly, and accurately including fact fluency, computational fluency and procedural fluency.
- Application: Students use math flexibly for applications in problem-solving in real-world contexts, as well as mathematical contexts.

High quality mathematics instruction should include all three levels of rigor with equal intensity. The three levels of rigor can be visualized as a three-legged stool. If one area of rigor is ignored or receives less intensity, it will fall over, thus not providing a stable foundation for students.

Critical end-of-grade level standards are identified in grades K-5 where fluency should be expected by the end of the grade.

Effective Teaching Practices

By using rich mathematical tasks, students develop deep conceptual understanding and skill proficiency. Rich mathematical tasks involve teaching through problem solving with problembased instructional tasks.

Over the past twenty-five years, we have learned that standards alone-no matter their origins, authorship, or the process by which they are developed-will not realize the goal of high levels of mathematical understanding by all students. More is needed than standards. The National Council of Teachers of Mathematics (NCTM) has developed Principles to Actions: Ensuring Mathematical Success for All which identifies specific actions that teachers and stakeholders need to take to realize our shared goal of ensuring mathematical success for all. There are eight effective teaching practices.

1. Establish mathematics goals to focus learning. Effective teaching of mathematics establishes clear goals for the mathematics that students are learning, situates goals within learning progressions, and uses the goals to guide instructional decisions.
2. Implement tasks that promote reasoning and problem-solving. Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical reasoning and problem solving and allow multiple entry points and varied solution strategies.
3. Use and connect mathematical representations. Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.
4. Facilitate meaningful mathematical discourse. Effective teaching of mathematics facilitates discourse among students to build shared understanding of mathematical ideas by analyzing and comparing student approaches and arguments.
5. Pose purposeful questions. Effective teaching of mathematics uses purposeful questions to assess and advance students' reasoning and sense-making about important mathematical ideas and relationships.
6. Build procedural fluency from conceptual understanding. Effective teaching of mathematics builds fluency with procedures on a foundation of conceptual understanding so that students, over time, become skillful in using procedures flexibly as they solve contextual and mathematical problems.
7. Support productive struggle in learning mathematics. Effective teaching of mathematics consistently provides students, individually and collectively, with
opportunities and support to engage in productive struggle as they grapple with mathematical ideas and relationships.
8. Elicit and use evidence of student thinking. Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

Content Standards

The mathematical content standards are the individual skills and competencies that students should know and be able to demonstrate. Individual standards are organized into larger clusters, or groups of related standards. Clusters are then organized into domains, or groups of related clusters.

Standards for Mathematical Practices

The Standards for Mathematical Practice (SMP) describe ways in which students should engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years. Equally, the SMPs are varieties of expertise that are specific to mathematics; they reflect the discipline's habits of mind, ways of knowing, and intellectual virtues. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics (NCTM) process standards for problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report "Adding It Up": adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

There are eight Standards for Mathematical Practices.

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

The SMPs are defined in grade bands with grade specific examples for grades K-5, grades $6-8$, and high school. The grade band descriptors are found at the beginning of each grade band within the body of the standards.

SMP Bundling: The eight practices can be bundled into three larger categories to support:
A. Problem Solving (SMPs $1,5,7,8$)
B. Communicating Reasoning (SMPs 3,6)
C. Mathematical Modeling and Data Analysis (SMPs 2,4,5)

This bundling can help to focus the practices in instruction. While each bundle could be applied to any standard, there is generally not enough time in instruction to do so. Therefore, in order to assist educators in emphasizing the most important ones with the corresponding standards, the bundle is listed after the standards. This is not to limit educators but to assist with the decisionmaking process.

The Problem Solving bundle contains SMPs 1,5,7, and 8. In this bundle, students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem-solving strategies.

Problem Solving characteristics include:

1. Apply mathematics to solve well-posed problems in pure mathematics and arising in everyday life, society, and the workplace.
2. Select and use appropriate tools strategically.
3. Interpret results in the context of a situation.
4. Identify important quantities in a practical situation and map the relationships (e.g., using diagrams, two-way tables, graphs, flowcharts, or formulas).

The Communicating Reasoning bundle contains SMPs 3 and 6. In this bundle, students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others. Communicating Reasoning characteristics include:

1. Test propositions or conjectures with specific examples.
2. Construct, autonomously, chains of reasoning that will justify or refute propositions or conjectures.
3. State logical assumptions being used.
4. Use the technique of breaking an argument into cases.
5. Distinguish correct logic or reasoning from that which is flawed and-if there is a flaw in the argument-explain what it is.
6. Base arguments on concrete referents such as objects, drawings, diagrams, and actions.
7. At later grades, determine conditions under which an argument does and does not apply. (For example, area increases with perimeter for squares, but not for all plane figures.)

The Mathematical Modeling and Data Analysis bundle contains SMPs 2,4, and 5. In this bundle, students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems. Mathematical Modeling and Data Analysis characteristics include:

1. Apply mathematics to solve problems arising in everyday life, society, and the workplace.
2. Construct, autonomously, chains of reasoning to justify mathematical models used, interpretations made, and solutions proposed for a complex problem.
3. State logical assumptions being used.
4. Interpret results in the context of a situation.
5. Analyze the adequacy of and make improvements to an existing model or develop a mathematical model of a real phenomenon.

How to Read the Standards

The standards have been written to provide a meaningful way to interpret what students should know and be able to do at each grade level. The items below are used to help clarify the information in the Standards document

- Standards define what students should understand and be able to do.
- Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.
- Domains are larger groups of related standards. Standards from different domains may sometimes be closely related.
- Level of Focus identifies the content where the majority of the instructional time may be needed for all students to achieve proficiency. The three levels of focus are color coded as Major Clusters, Supporting Clusters, or Additional Clusters.
- Level of Rigor identifies which of the aspects of rigor applies to the standards, for example, conceptual understanding, procedural fluency and application.
- Standards for Mathematical Practice Indicators identifies which bundle of the standards for mathematical practices need to be emphasized, for example, Problem Solving, Communicating Reasoning, and Mathematical Modeling and Data Analysis.
- Taxonomy Codes are unique, alpha-numeric identifiers for each standard. For example, 1.OA.A. 1 can be interpreted as: First Grade. Operations and Algebraic Thinking. Cluster A. Standard number 1.

Standards for Mathematical Practice: Grades K-5

The eight mathematical practice standards describe ways in which student practitioners of the discipline of mathematics should engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years. Equally the mathematical practice standards are varieties of expertise that are specific to mathematics; they reflect the habits of mind of the discipline, ways of knowing and intellectual virtues. These practices rest on two sets of important "processes and proficiencies" that have long standing importance in mathematics education-the National Council of Teachers of Mathematics (NCTM) process standards and the strands of mathematical proficiency specified in the National Research Council's Report "Adding It Up." ${ }^{1}$ Designers of curricula, assessments, and professional development should endeavor to connect the mathematical practices to mathematical content in instruction.

SMP 1: Make sense of problems and persevere in solving them.

Mathematically proficient elementary students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. For example, instead of hunting for "key words" in a word problem, young students might use concrete objects or pictures to show the actions of a problem, such as counting out and joining two sets. If students are not at first making sense of a problem or seeing a way to begin, they ask questions to help get started. As they work, they continually ask themselves, "Does this make sense?" When they find that their solution pathway does not make sense, they look for another pathway that does. They may consider simpler forms of the original problem; for example, they might replace multi-digit numbers in a word problem with single-digit numbers to better appreciate the quantities in the problem and how they relate. Once students have a solution, they often check their answers to problems using a different approach. Mathematically proficient students consider different solution pathways, both their own and those of other students, in order to identify and analyze correspondences among approaches. They can explain correspondences among physical models, pictures, diagrams, equations, verbal descriptions, tables and graphs.

MP 2: Reason abstractly and quantitatively

Mathematically proficient elementary students make sense of quantities and their relationships in problem situations. They can contextualize quantities and operations by using images or stories. They interpret symbols as having meaning, not just as directions to carry out a procedure. Even as they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects. They can contextualize an abstract problem by placing it in a context they then use to make sense of the mathematical ideas. For example, if a student

[^0]chooses to evaluate the expression 40-26 mentally, the student might think of a context to help produce a strategy - for example, by thinking "if I have 27 marbles and Marie has 40, how many more do I need to have as many as Marie?" This prompts a strategy of thinking " 4 more will get me to a total of 30 , and then 10 more will get me to 40 , so the answer is 14. ." In this example, the student uses a context to think through a strategy for solving the problem, using the relationship between addition and subtraction and decomposing and recomposing the quantities. The student then uses what he/she did in the context to identify the solution of the original abstract problem. Mathematically proficient students can also make sense of a contextual problem and express the actions or events that are described in the problem using numbers and symbols. If they work with the symbols to solve the problem, they can then interpret their solution in terms of the context.

SMP 3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient elementary students construct verbal and written mathematical arguments that explain the reasoning underlying a strategy, solution or conjecture. Arguments might use concrete referents such as objects, drawings, diagrams, and actions. Arguments might also rely on definitions, previously established results, properties, or structures. For example, a student might argue that $1 / 41>1 / 73$ on the basis that one of 41 equal parts of a whole is larger than one of 73 equal parts of that whole; or that two different shapes have equal area because it has already been demonstrated that both shapes are half of the same rectangle. Students might also use counterexamples to argue that a conjecture is not true - for example, a rhombus is an example that shows that not all quadrilaterals with 4 equal sides are squares; or, multiplying by 1 shows that a product of two whole numbers is not always greater than each factor. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). In the elementary grades, arguments are often a combination of all three. Some of their arguments apply to individual problems, but others are about conjectures based on regularities they have noticed across multiple problems (see SMP 8). As they articulate and justify generalizations, students consider to which mathematical objects (numbers or shapes, for example) their generalizations apply. For example, young students may believe a generalization about the behavior of addition applies to positive whole numbers less than 100 because those are the numbers with which they are currently familiar. As they expand their understanding of the number system, they reexamine their conjecture for numbers in the hundreds and thousands. In upper elementary grades, students return to their conjectures and arguments about whole numbers to determine whether they apply to fractions and decimals. Mathematically proficient students can listen to or read the arguments of others, decide whether they make sense, ask useful questions to clarify or improve the arguments, and build on those arguments. They can communicate their arguments both orally and in writing, compare them to others, and reconsider their own arguments in response to the critiques of others.

SMP 4: Model with mathematics.

When given a problem in a contextual situation, mathematically proficient elementary students can identify the mathematical elements of a situation and create or interpret a mathematical model that shows those elements and relationships among them. The mathematical model might be represented in one or more of the following ways: numbers and symbols; geometric figures, pictures or physical objects used to abstract the mathematical elements of the situation; a mathematical diagram such as a number line, table, or graph; or students might use more than one of these to help them interpret the situation. For example, when students encounter situations such as sharing a pan of cornbread among six people, they might first show how to
divide the cornbread into six equal pieces using a picture of a rectangle. The rectangle divided into 6 equal pieces is a model of the essential mathematical elements of the situation. When the students learn to write the name of each piece in relation to the whole part as $1 / 6$ they are now modeling the situation with mathematical notation. Mathematically proficient students are able to identify important quantities in a contextual situation and use mathematical models to show the relationships of those quantities, particularly in multi-step problems such as those involving more than one unknown quantity. Mathematically proficient students use and interpret models to analyze relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. As they decontextualize the situation and represent it mathematically, they are also reasoning abstractly (SMP 2).

Note: Although physical objects and drawings can be used to model a situation, using these tools absent a contextual situation is not an example of SMP 4. For example, using manipulatives or drawing tens and ones to illustrate the calculation $23+11$ would not be an example of this mathematical practice. SMP 4 is about applying math to a problem in context.

SMP 5: Use appropriate tools strategically.

Mathematically proficient elementary students consider the tools that are available when solving a mathematical problem, whether in a real-world or mathematical context. These tools might include physical objects (cubes, geometric shapes, place value manipulatives, fraction bars, etc.); drawings or diagrams (number lines, tally marks, tape diagrams, arrays, tables, graphs, etc.); concrete objects that represent mathematical concepts, paper and pencil, rulers and other measuring tools, scissors, tracing paper, grid paper, virtual manipulatives, appropriate software applications, or other available technologies. Example: a student may use graph paper to find all the possible rectangles that have a given perimeter or use linking cubes to represent two quantities and then compare the two representations side by side. Proficient students are sufficiently familiar with tools appropriate for their grade and areas of content to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained from their use as well as their limitations. Students choose tools that are relevant and useful to the problem at hand. Once efficient and generalizable methods are available (such as applying properties of operations and concepts of place value, or using the standard written algorithms in the grades indicated in the content standards), being strategic implies that students no longer choose diagrams or concrete objects as tools for calculation. Such representations remain useful as ways to make mathematical thinking visible (SMP 3).

SMP 6: Attend to precision.

Mathematically proficient elementary students communicate precisely to others both verbally and in writing. They start by using everyday language to express their mathematical ideas, realizing that they need to select words with clarity and specificity rather than saying, for example, "it works" without explaining what "it" means. As they encounter the ambiguity of everyday terms, they come to appreciate, understand, and use mathematical vocabulary. Once young students become familiar with a mathematical idea or object, they are ready to learn more precise mathematical terms to describe it. In using mathematical representations, students use care in providing appropriate labels to precisely communicate the meaning of their representations. When making mathematical arguments about a solution, strategy, or conjecture (see SMP 3), mathematically proficient students learn to craft careful explanations that communicate their reasoning by referring specifically to each important mathematical element, describing the relationships among them, and connecting their words clearly to their
representations. Elementary students use mathematical symbols correctly and can describe the meaning of the symbols they use. When measuring, mathematically proficient students use tools and strategies to minimize the introduction of error. Mathematically proficient students specify units of measure, label charts, graphs, and drawings; calculate accurately and efficiently; and use clear and concise notation to record their work. Diligence and attention to detail are mathematical virtues; mathematically proficient students care that an answer is right; they check their work; they solve the problem another way; they take responsibility for careless mistakes and correct them.

SMP 7: Look for and make use of structure.

Mathematically proficient elementary students use structures such as place value, the properties of operations, other generalizations about the behavior of the operations (for example, even numbers can be divided into 2 equal groups and odd numbers, when divided by 2, always have one left over), and attributes of shapes to solve problems. In many cases, they have identified and described these structures through repeated reasoning (see SMP 8). For example, when younger students recognize that adding 1 result in the next counting number, they are identifying the basic structure of whole numbers. When older students calculate 16×9, they might apply the structure of place value and the distributive property to find the product: 16 $x 9=(10+6) \times 9=(10 \times 9)+(6 \times 9)$. To determine the volume of a $3 \times 4 \times 5$ rectangular prism, students might see the structure of the prism as five layers of 3×4 arrays of cubes. Students in elementary grades most often look for and make use of structure when they view expressions as objects to observe and interpret, for example by observing that $120-41$ must be one less than $120-40$ because "if you subtract one more, the result will be one less"; or by making sense of $10 \times 9+6 \times 9$ as "ten nines and six more nines" instead of only being able to see $10 \times$ 9 as instructions to calculate these products' values. A word problem that involves distributing 29 marbles among 4 vases could lead (SMP 4) to an equation model ($29-1$) $\div 4=7$, where the expression on the left-hand side not only has the value 7 but also suggests, based on its structure, a process of discarding 1 marble and dividing the rest of the marbles equally into 4 groups of 7 .

SMP 8: Look for and express regularity in repeated reasoning.

Mathematically proficient elementary students look for regularities as they solve multiple related problems, then identify and describe these regularities. For example, students might notice a pattern in the change to the product when a factor is increased by $1: 5 \times 7=35$ and $5 \times 8=40-$ the product changes by $5 ; 9 \times 4=36$ and $10 \times 4=40-$ the product changes by 4 . Students might then express this regularity by saying something like, "When you change one factor by 1 , the product increases by the other factor." Younger students might notice that when tossing twocolor counters to find combinations of a given number, they always get what they call "opposites" - when tossing 6 counters, they get 2 red, 4 yellow and 4 red 2 yellow and when tossing 4 counters, they get 1 red, 3 yellow and 3 red, 1 yellow. Mathematically proficient students formulate conjectures about what they notice, for example, when 1 is added to a factor, the product increases by the other factor. As students practice articulating their observations both verbally and in writing, they learn to communicate with greater precision (SMP 6). As they explain why these generalizations must be true, they construct, critique, and compare arguments (SMP 3).

Kindergarten

In Kindergarten, instructional time should focus on the foundations of numbers including the essential elements of counting, place value, and the introduction of addition and subtraction.
(1) The kindergarten math standards focus on developing a strong foundation in early mathematical concepts. In kindergarten, students are expected to develop a deep understanding of numbers and counting. They learn to count to 100 by ones, and tens, recognize and write numbers $0-20$, and understand the concept of one-to-one correspondence and one more, one less. Basic addition and subtraction concepts are introduced, such as combining and separating sets of objects. Students also begin to explore shapes, patterns, and measurement, including comparing the length, weight and capacity of objects. Additionally, they engage in problem-solving activities that encourage critical thinking and mathematical reasoning.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
(2) Kindergarten math standards also emphasize
developing strong mathematical communication skills. Students are encouraged to express their mathematical thinking orally and in writing, as well as to use math vocabulary to describe and explain their reasoning. They work collaboratively to solve problems and engage in hands-on activities to reinforce their understanding of mathematical concepts. Overall, the kindergarten math standards aim to provide a solid foundation for future mathematical learning and promote mathematical literacy from an early age.

Grade K Overview

Major clusters are bolded; these represent the skills and concepts that should represent 65$85 \%$ of instructional time.

Counting and Cardinality (CC)

- Know number names and the count sequence forward and backward.
- Count to tell the number of objects.
- Compare numbers.

Operations and Algebraic Thinking (OA)

- Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

Number and Operations in Base Ten (NBT)

- Work with numbers 11-19 to gain foundations for place value.

Measurement and Data (MD)

- Describe and compare measurable attributes.
- Classify objects and count the number of objects in each category.
- Identify attributes and values of money.

Geometry (G)

- Identify and describe shapes.
- Analyze, compare, create and compose shapes.

Domain: K.CC Counting and Cardinality

K.CC.A Major Cluster: Know number names and the count sequence forward.

Standard	Rigor	SMP Bundle
K.CC.A.1 Count to 100 by ones and by tens.	Procedural	Communicating Reasoning
K.CC.A.2 Count forward beginning from any given number within the range of 0-100.	Procedural	Communicating Reasoning
K.CC.A.3 Given a set of 0-31 objects, write a numeral to represent the quantity.	Conceptual Procedural	Communicating Reasoning

K.IA.A Supporting Cluster: Know number names and the count sequence backward.

Standard	Rigor	SMP Bundle
K.IA.1 Count backwards by ones from 31 to 0	Procedural	Communicating Reasoning
K.IA.2 Count backwards beginning from any given number within the range of 0-31.	Procedural	Communicating Reasoning

K.CC.B Major Cluster: Count to tell the number of objects.

Standard	Rigor	SMP Bundle
K.CC.B. 4 Demonstrate awareness of essential elements of counting a. number names must be said in the standard order (sequencing) b. each object must be paired with one and only one number name and each number name with one and only one object (one-to- one correspondence) c. the last number name said tells the number of objects counted, objects may be counted in any order (cardinality) d. the number of objects is the same regardless of their arrangement or the order in which they were counted (conservation of number) e. each successive number name refers to a quantity that is one larger	Conceptual Procedural	Communicating Reasoning
K.CC.B. 5 Count to answer "how many?" when given a number of 0-31 objects arranged in a variety of configurations including a line, a rectangular array, a circle, and a scattered configuration.	Conceptual Procedural	Communicating Reasoning

K.CC.C Major Cluster: Compare numbers.

Standard	Rigor	SMP Bundle
K.CC.C.6 Determine whether the number of objects in one group of 1-10 objects is greater than, less than, or equal to the number of objects in another group of 1-10 objects.	Conceptual	Communicating Reasoning
K.CC.C.7 Compare two numbers between 1 and 10 presented as written numerals.	Conceptual Procedural	Communicating Reasoning

Domain: Operations and Algebraic Thinking: K.OA

K.OA.A Major Cluster: Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

Standard	Rigor	SMP Bundle
K.OA.A. 1 Represent addition and subtraction situations in a variety of ways. For example, with objects, fingers, mental images, drawings, sounds (claps), acting out situations, verbal explanations, expressions, or equations.	Conceptual	Communicating Reasoning
K.OA.A. 2 Add and subtract within 10, and solve word problems in situations of: - add-to with result unknown - take-from with result unknown - put-together/take-apart with total unknown - put-together with both addends unknown. (See Problem Types Table 1, page 160 in Appendix)	Application	Problem Solving
K.OA.A. 3 Decompose numbers less than or equal to 10 in more than one way. For example, by using objects or drawings, and record each decomposition by a drawing or equation, as in $5=2+3,5=4+1$ and $5=2+2+1$.	Conceptual Procedural	Communicating Reasoning
K.OA.A. 4 For any number from 1 to 9 , find the number that makes 10 when added to the given numbers by using objects or drawings and record the answer with a drawing or equation	Conceptual Procedural	Communicating Reasoning
K.OA.A. 5 Fluently add and subtract within 5 using efficient mental strategies (such as counting on, making ten, decomposing a number leading to a ten, using the relationship between addition and subtraction, and creating equivalent, but easier or known sums). By the end of kindergarten, flexibly, efficiently and accurately find all sums within 5 . Note: Fluency of this standard is critical by the end of grade level.	Procedural	Communicating Reasoning

Domain: Number and Operations in Base Ten: K.NBT

K.NBT.A Major Cluster: Work with numbers 11-19 to gain foundations for place value.

Standard	Rigor	SMP Bundle
K.NBT.A.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, by using objects or drawings, and record each composition or decomposition by a drawing or equation (for example, 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	Conceptual	Communicating Reasoning

Domain: Measurement and Data: K.MD

K.MD.A Additional Cluster: Describe and compare measurable attributes.

Standard	Rigor	SMP Bundle
K.MD.A.1 Describe several measurable attributes (for example, length, width, weight) of objects by using words such as short, long, small, big, heavy, light.	Conceptual	Communicating Reasoning
K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.	Application	Communicating Reasoning

K.MD.B Supporting Cluster: Classify objects and count the number of objects in each category.

Standard	Rigor	SMP Bundle
K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.	Application	Communicating Reasoning

K.MD.IA Additional Cluster: Identify attributes and values of money.

Standard	Rigor	SMP Bundle
K.IA.3 Identify pennies, nickels, and dimes and know their value.	Procedural	Communicating Reasoning

Domain: Geometry K.G

K.G.A Additional Cluster: Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).

Standard	Rigor	SMP Bundle
K.G.A.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.	Conceptual Procedural Application	Communicating Reasoning
K.G.A.2 Correctly name shapes regardless of their orientations or overall size.	Procedural	Communicating Reasoning
K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").	Procedural	Communicating Reasoning

K.G.B Supporting Cluster: Analyze, compare, create, and compose shapes.

Standard	Rigor	SMP Bundle
K.G.B.4 Analyze and compare two- and three- dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (for example, number of sides and vertices/"corners") and other attributes (for example, having sides of equal length).	Application	Conceptual Communicating Reasoning Mathematical Modeling and Data Analysis
K.G.B.5 Model shapes in the world by building shapes from components (for example, sticks and clay balls) and drawing shapes.	Conceptual	Application Reasoning
Rathematical Modeling and Data Analysis		
K.G.B.6 Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"	Conceptual	Application
Communicating Reasoning Mathematical		
Modeling and Data		
Analysis		

First Grade

In Grade 1, instructional time should focus on four critical areas: (1) developing understanding of addition, subtraction, and strategies for addition and subtraction within 20; (2) developing understanding of whole number relationships and place value, including grouping in tens and ones; (3) developing understanding of linear measurement and measuring lengths as iterating length units; and (4) reasoning about attributes of, and composing and decomposing geometric shapes.
(1) Students develop strategies for adding and subtracting whole numbers based on their prior work with small numbers. They use a variety of models, including discrete objects and length-based models (e.g., cubes connected to form lengths), to model add-to, take-from, put-together, take-apart, and compare situations to develop meaning for the operations of addition and subtraction, and to develop strategies to solve arithmetic problems with

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning. these operations. Students understand connections between counting and addition and subtraction (e.g., adding two is the same as counting on two). They use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties (e.g., "making tens") to solve addition and subtraction problems within 20. By comparing a variety of solution strategies, children build their understanding of the relationship between addition and subtraction.
(2) Students develop, discuss, and use efficient, accurate, and generalizable methods to add within 100 and subtract multiples of 10. They compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative sizes. They think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers 11 to 19 as composed of a ten and some ones). Through activities that build number sense, they understand the order of the counting numbers and their relative magnitudes.
(3) Students develop an understanding of the meaning and processes of measurement, including underlying concepts such as iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for indirect measurement.
(4) Students compose and decompose plane or solid figures (e.g., put two triangles together to make a quadrilateral) and build understanding of part-whole relationships as well as the properties of the original and composite shapes. As they combine shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine how they are alike and different, to develop the background for measurement and for initial understandings of properties such as congruence and symmetry.

Grade 1 Overview

Major clusters are bolded; these represent the skills and concepts that should represent 65$85 \%$ of instructional time.

Operations and Algebraic Thinking (OA)

- Represent and solve problems involving addition and subtraction.
- Understand and apply properties of operations and the relationship between addition and subtraction.
- Add and subtract within 20.
- Work with addition and subtraction equations.

Number and Operations in Base Ten (NBT)

- Extend the counting sequence.
- Understand place value.
- Use place value understanding and properties of operations to add and subtract.

Measurement and Data (MD)

- Measure lengths indirectly and by iterating length units.
- Work with time and money.
- Represent and interpret data.

Geometry (G)

- Reason with shapes and their attributes.

Domain: 1.OA Operations and Algebraic Thinking

1.OA.A Major Cluster: Represent and solve problems involving addition and subtraction.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 1.OA.A.1 Use addition and subtraction within } 20 \text { to solve } \\ \text { word problems involving situations of: } \\ \text { - adding to } \\ \text { - taking from } \\ \text { - putting together } \\ \text { taking apart } \\ \text { comparing }\end{array}$	Application	Problem Solving
mith unknowns in all positions, by using objects, drawings,		
and equations with a symbol for the unknown number to		
represent the problem. (See Problem Types Table 1,		
page 160 in Appendix)		

Analysis\end{array}\right]\)| |
| :--- |
| 1.OA.A.2 Solve word problems that call for addition of
 three whole numbers whose sum is less than or equal to
 20, by using objects, drawings, and equations with a
 symbol for the unknown number to represent the problem. |
| Application |

1.OA.B Major Cluster: Understand and apply properties of operations and the relationship between addition and subtraction.

Standard	Rigor	SMP Bundle
1.OA.B.3 Apply properties of operations, (commutative and associative), as strategies to add and subtract. (Commutative property of addition - Example - If $8+3=$ 11 is known, then $3+8=11$ is also known. Associative property of addition - Example - To add $2+6+4$, the second two numbers can be added to make a ten, so $2+$ $6+4=2+10=12)$.	Conceptual	Problem Solving
1.OA.B.4 Understand subtraction as an unknown-addend problem. For example, subtract $10-8$ by finding the number that makes 10 when added to 8.	Conceptual	Communicating Reasoning

1.OA.C Major Cluster: Add and subtract within 20.

Standard	Rigor	SMP Bundle
1.OA.C. 5 Relate counting forward and backward to addition and subtraction, add or subtract 1 or 2 , within 20.	Conceptual	Mathematical Modeling and Data Analysis
1.OA.C. 6 Add and subtract within 20 , using strategies such as: - counting on - making ten (for example, $8+6=8+2+4=10+4$ = 14) - decomposing a number leading to a ten (for example, $13-4=13-3-1=10-1=9$) - using the relationship between addition and subtraction (for example, knowing that $8+4=12$, one knows $12-8=4$) - creating equivalent but easier or known sums (for example, adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$)	Conceptual	Problem Solving
1.IA. 1 Fluently add and subtract within 10 using efficient mental strategies (such as counting on, making ten, decomposing a number leading to a ten, using the relationship between addition and subtraction, and creating equivalent, but easier or known sums). By the end of Grade 1, flexibly, efficiently and accurately find all sums within 10. Note: Fluency of this standard is critical by the end of grade level.	Conceptual	Problem Solving

1.OA.D Major Cluster: Work with addition and subtraction equations.

Standard	Rigor	SMP Bundle
1.OA.D.Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=6,7=8-1,5$ $+2=2+5,4+3=5+2$. Conceptual	Communicating Reasoning	
1.OA.D.8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+$ $\square=11,5=\square-3,6+6=\square$.	Procedural	Problem Solving

Domain: 1.NBT Number and Operations in Base Ten

1.NBT.A Major Cluster: Extend the counting sequence.

Standard	Rigor	SMP Bundle
1.NBT.A.1 Count forward and backward to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.	Conceptual	Mathematical Modeling and Data Analysis

1.NBT.B Major Cluster: Understand place value.

Standard	Rigor	SMP Bundle
1.NBT.B.2 Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones - called a "ten." b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	Conceptual	Communicating Reasoning
1.NBT.B.3 Compare two two-digit numbers based on meanings of the tens and ones digits, using phrases as greater than, less than or equal to.	Conceptual	Communicating Reasoning

1.NBT.C Major Cluster: Use place value understanding and properties of operations to add and subtract.

$\left.$| Standard | Rigor | SMP Bundle |
| :--- | :--- | :--- |
| 1.NBT.C.4 Add within 100, including adding a two-digit
 number and a one-digit number, and adding a two-digit
 number and a multiple of 10, using concrete models or
 drawings and strategies based on place value, properties
 of operations, and/or the relationship between addition and
 subtraction; and explain the reasoning used. Understand
 that in adding two-digit numbers, one adds tens and tens,
 ones and ones; and sometimes it is necessary to compose
 a ten. | Procedural | Conceptual
 Mathematical
 Modeling and Data
 Analysis |
| 1.NBT.C. 5 Given a two-digit number, mentally find 10
 more or 10 less than the number, without having to count;
 explain the reasoning used. | Conceptual | Communicating
 Reasoning |
| 1.NBT.C. 6 Subtract multiples of 10 in the range 10-90 from
 multiples of 10 in the range 10-90 (positive or zero
 differences), using concrete models or drawings and
 strategies based on place value, properties of operations,
 and/or the relationship between addition and subtraction;
 explain the reasoning used. | Procedural | Conceptual | | Mathematical |
| :--- |
| Modeling and Data |
| Analysis | \right\rvert\,

Domain: 1.MD Measurement and Data

1.MD.A Major Cluster: Measure lengths indirectly and by iterating length units.

Standard	Rigor	SMP Bundle
1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.	Conceptual	Communicating Reasoning
1.MD.A.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.	Procedural	Conceptual
Communicating Reasoning		

1.MD.B Additional Cluster: Work with time and money.

Standard	Rigor	SMP Bundle
1.MD.B.3 Gain initial literacies in time and money.	Conceptual	Mathematical Modeling and Data Analysis
Tell and write time in hours and half-hours using analog and digital clocks. (IA) Count a mixed collection of dimes and pennies and determine the cent value (total not to exceed 100 cents). For example, if you have 2 dimes and 3 pennies, how many cents do you have?	Procedural	

1.MD.C Supporting Cluster: Represent and interpret data.

Standard	Rigor	SMP Bundle
1.MD.C.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	Procedural	Conceptual Reasoning
Mathematical Modeling and Data Analysis		

Domain: 1.G Geometry

1.G.A Additional Cluster: Reason with shapes and their attributes.

Standard	Rigor	SMP Bundle
1.G.A.1 Distinguish between defining attributes (for example, triangles are closed and three-sided) versus non- defining attributes (for example, color, orientation, overall size); build and draw shapes to possess defining attributes.	Procedural	Conceptual Communicating Reasoning
1.G.A.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter- circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.	Conceptual	Mathematical Modeling and Data Analysis
1.G.A.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.	Procedural	Conceptual
Communicating Reasoning		

Second Grade

In grade 2, instructional time should focus on four critical areas: (1) extending understanding of base-ten notation; (2) building fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes.
(1) Students extend their understanding of the base-ten system. This includes ideas of counting in fives, tens, and multiples of hundreds, tens, and ones, as well as number relationships involving these units, including comparing. Students understand multi-digit numbers (up to 1000) written in base-ten notation, recognizing that the digits in each place represent amounts of thousands, hundreds, tens, or ones (for example, 853 is 8 hundreds +5 tens +3 ones).
(2) Students use their understanding of addition to develop fluency with addition and subtraction within 100. They solve problems within 1000 by applying their understanding of models for addition and subtraction, and they develop, discuss, and use efficient, accurate, and generalizable methods to compute sums and differences of whole numbers in base-ten notation, using their understanding of place value and the properties of operations. They select and accurately apply methods that are appropriate for the context and the numbers involved to mentally calculate sums and differences for numbers with only tens or only hundreds.
(3) Students recognize the need for standard units of measure (centimeter and inch) and they use rulers and other measurement tools with the understanding that linear measure involves an iteration of units. They recognize that the smaller the unit, the more iterations they need to cover a given length.
(4) Students describe and analyze shapes by examining their sides and angles. Students investigate, describe, and reason about decomposing and combining shapes to make other shapes. Through building, drawing, and analyzing two- and three-dimensional shapes, students develop a foundation for understanding area, volume, congruence, similarity, and symmetry in later grades.

Grade 2 Overview

Major clusters are bolded; these represent the skills and concepts that should represent 6585\% of instructional time.

Operations and Algebraic Thinking (OA)

- Represent and solve problems involving addition and subtraction.
- Add and subtract within 20.
- Work with equal groups of objects to gain foundations for multiplication.

Number and Operations in Base Ten (NBT)

- Understand place value.
- Use place value understanding and properties of operations to add and subtract.

Measurement and Data (MD)

- Measure and estimate lengths in standard units.
- Relate addition and subtraction to length.
- Work with time and money.
- Represent and interpret data.

Geometry (G)

- Reason with shapes and their attributes.

Domain: 2.OA Operations and Algebraic Thinking

2.OA.A Major Cluster: Represent and solve problems involving addition and subtraction.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 2.OA.A.1 Use addition and subtraction within } 100 \text { to solve } \\ \text { one- and two-step word problems involving situations of: }\end{array}$	Application	Problem Solving
- adding to		
- taking from		
- putting together		
- taking apart		
- comparing		
Momematical		
Analysis and Data		

2.OA.B Major Cluster: Represent and solve problems involving addition and subtraction.

Standard	Rigor	SMP Bundle
2.OA.B.2 Fluently add and subtract within 20 using efficient mental strategies (such as counting on, making ten, decomposing a number leading to a ten, using the relationship between addition and subtraction, and creating equivalent, but easier or known sums). By the end of Grade 2, flexibly, efficiently and accurately find all sums of two one digit numbers.	Procedural	Problem Solving
Note: Fluency of this standard is critical by the end of grade level.	Mathematical Modeling and Data Analysis	

2.OA.C Supporting Cluster: Work with equal groups of objects to gain foundations for multiplication.

Standard	Rigor	SMP Bundle
2.OA.C.3 Determine whether a group of objects (up to 20) has an odd or even number of members, for example, by pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends.	Conceptual	Mathematical Modeling and Data Analysis
2.OA.C.4 Use repeated addition to find the total number of objects arranged in equal groups and rectangular arrays; write an equation to express the total as a sum of equal addends.	Conceptual	Mathematical Modeling and Data Analysis

Domain: 2.NBT Number and Operations in Base Ten

2.NBT.A Major Cluster: Understand place value.

Standard	Rigor	SMP Bundle
2.NBT.A.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; for example, 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:	Conceptual	Communicating Reasoning a. 100 can be thought of as a bundle of ten tens - called a "hundred."
b.The numbers 100, 200, 300, 400, $500,600, ~ 700$, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	Mathematical Modeling and Data Analysis	
2.NBT.A.2 Count forward and backward within 1000; skip-count forward and backward by 5s, 10s, and 100s.	Procedural	Mathematical Modeling and Data Analysis
2.NBT.A.3 Read and write numbers to 1000 using base- ten numerals, number names, and expanded form.	Conceptual	Mathematical Modeling and Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
2.NBT.A.4 Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using terms "greater than", "less than", and "equal to", connecting to the use of $>,=$, and $<$ symbols.	Conceptual	Mathematical Modeling and Data Analysis

2.NBT.B Major Cluster: Use place value understanding and properties of operations to add and subtract.

Standard	Rigor	SMP Bundle
2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Note: Fluency of this standard is critical by the end of grade level.	Procedural	Conceptual Mathematical Modeling and Data Analysis
2.NBT.B.6 Add up to four two-digit numbers using strategies based on place value and properties of operations.	Conceptual	Problem Solving
Problving		
2.NBT.B.7 Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three- digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	Procedural	Mathematical Modeling and Data Analysis
Remmunicating		
2.NBT.B.8 Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	Procedural	Problem Solving
Problem Solving		

Updated 1/4/24

Standard	Rigor	SMP Bundle
2.NBT.B.9 Explain why addition and subtraction strategies work, using place value and the properties of operations. Explanations may be supported by drawings or objects.	Conceptual	Problem Solving
Communicating		
Reasoning		
Mathematical		
Modeling and Data		
Analysis		

Domain: 2.MD Measurement and Data

2.MD.A Major Cluster: Measure and estimate lengths in standard units.

Standard	Rigor	SMP Bundle
2.MB.A.1 Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	Conceptual Procedural	Mathematical Modeling and Data Analysis
2.MD.A.2 Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	Procedural	Conceptual Reasoning Mathematical Modeling and Data Analysis
2.MD.A.3 Estimate lengths using units of inches, feet, centimeters, and meters.	Conceptual	Communicating Reasoning
Mathematical		
Modeling and Data		
Analysis		

Updated 1/4/24

Standard	Rigor	SMP Bundle
2.MD.A.4 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	Application	Problem Solving Communicating Reasoning Mathematical
Modeling and Data		
Analysis		

2.MD.B Major Cluster: Relate addition and subtraction to length.

Standard	Rigor	SMP Bundle
2.MD.B.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, for example, by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	Application	Problem Solving
2.MD.B.6 Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.	Application	Mathematical Modeling and Data Analysis

2.MD.C Supporting Cluster: Work with time and money.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 2.MD.C.7 Tell and write time from analog and digital } \\ \text { clocks to the nearest five minutes, using a.m. and p.m. }\end{array}$	Application	$\begin{array}{l}\text { Communicating } \\ \text { Reasoning } \\ \text { Mathematical }\end{array}$
Modeling and Data		
Analysis		

Updated 1/4/24

Standard	Rigor	SMP Bundle
2.IA.1 Describe the relationship among standard units of time: minutes, hours, days, weeks, months and years (such as 7 days in a week, 60 minutes in an hour, etc.).	Procedural	Communicating Reasoning Mathematical Modeling and Data Analysis
2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ϕ symbols appropriately. For example, if you have 3 quarters, 2 dimes and 4 pennies, how many cents do you have?	Application	Problem Solving

2.MD.D Supporting Cluster: Represent and interpret data.

Standard	Rigor	SMP Bundle
2.MD.D.9 Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.	Application	Communicating Reasoning Mathematical Modeling and Data Analysis
2.IA.2 Use interviews, surveys, and observations to collect data that answer questions about students' interests and/or their environment.	Application	Mathematical Modeling and Data Analysis
2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems (See Problem Types Table 1, page 160 in Appendix) using information presented in a bar graph.	Application	Procedural
Mathematical Modeling and Data Analysis		

Domain: 2.G Geometry

2.G.A Additional Cluster: Reason with shapes and their attributes.

Standard	Rigor	SMP Bundle
2.G.A.1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify two-dimensional shapes: triangles, quadrilaterals, rectangles, squares, trapezoids, pentagons, hexagons, circles, half-circles and quarter- circles, and three-dimensional figures: cubes, right rectangular prisms, right circular cones, and right circular cylinders. (Sizes are compared directly or visually, not compared by measuring.)	Conceptual	Mathematical Modeling and Data Analysis
2.G.A.2 Partition a rectangle into rows and columns of same-size squares and count to find the total number of partitions.	Conceptual	Mathematical Modeling and Data
Analysis		
2.G.A.3 Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	Conceptual	Mathematical Modeling and Data

Third Grade

In grade 3, instructional time should focus on four critical areas: (1) gaining an understanding of multiplication and division and strategies for multiplication and division within 100; (2) gaining an understanding of fractions, especially unit fractions (fractions with numerator 1); (3) gaining an understanding of the structure of rectangular arrays and of area; and (4) describing and analyzing twodimensional shapes.
(1) Students gain an understanding of multiplication and division and strategies for multiplication and division of 100. This involves learning the meanings of multiplication and division of whole numbers through activities and problems involving equal-sized groups, arrays, and area models; multiplication is finding an unknown product, and division is finding an unknown factor in these situations. For equal-sized group situations, division can require finding the unknown number of groups or the unknown group size. Students use properties of operations to calculate products of whole numbers, using increasingly sophisticated strategies based on these properties to solve multiplication and division problems involving single-digit factors. By comparing a variety of solution strategies, students learn the relationship between multiplication and division.
(2) Students gain an understanding of fractions, beginning with unit fractions. Students view fractions in general as being built out of unit fractions, and they use fractions along with visual fraction models to represent parts of a whole. Students understand that the size of a fractional part is relative to the size of the whole. For example, $1 / 2$ of the paint in a small bucket could be less paint than $1 / 3$ of the paint in a larger bucket, but $1 / 3$ of a ribbon is longer than $1 / 5$ of the same ribbon because when the ribbon is divided into 3 equal parts, the parts are longer than when the ribbon is divided into 5 equal parts. Students are able to use fractions to represent numbers equal to, less than, and greater than one. They solve problems that involve comparing fractions by using visual fraction models and strategies based on noticing equal numerators or denominators.
(3) Students recognize area as an attribute of two-dimensional regions. They measure the area of a shape by finding the total number of same-size units of area required to cover the shape without gaps or overlaps, a square with sides of unit length being the standard unit for measuring area. Students understand that rectangular arrays can be decomposed into identical rows or into identical columns. By decomposing rectangles into rectangular arrays of squares, students connect area to multiplication, and justify using multiplication to determine the area of a rectangle.
(4) Students describe, analyze, and compare properties of two-dimensional shapes. They compare and classify shapes by their sides and angles, and connect these with definitions of
shapes. Students also relate their fraction work to geometry by expressing the area of part of a shape as a unit fraction of the whole.

Grade 3 Overview

Major clusters are bolded; these represent the skills and concepts that should represent 6585\% of instructional time.

Operations and Algebraic Thinking (OA)

- Represent and solve problems involving multiplication and division.
- Use properties of operations and the relationship between multiplication and division.
- Multiply and divide within 100.
- Solve problems involving the four operations, and identify and explain patterns in arithmetic.

Number and Operations in Base Ten (NBT)

- Calculate with multi-digit numbers.

Number and Operations-Fractions (NF)

- Understand fractions as numbers.

Measurement and Data (MD)

- Solve problems with time, money and measured quantities.
- Represent and interpret data.
- Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
- Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

Geometry (G)

- Reason with shapes and their attributes.

Domain: 3.0A Operations and Algebraic Thinking

3.OA.A Major Cluster: Represent and solve problems involving multiplication and division.

Standard	Rigor	SMP Bundle		
$\begin{array}{l}\text { 3.OA.A. } 1 \text { Interpret products of whole numbers. For } \\ \text { example, interpret } 5 \times 7 \text { as the total number of objects in } \\ 5 \text { groups of } 7 \text { objects each. For example, describe a } \\ \text { context in which a total number of objects can be } \\ \text { expressed as } 5 \times 7 .\end{array}$	Conceptual	Problem Solving		
$\begin{array}{l}\text { 3.OA.A. } 2 \text { Interpret whole-number quotients of whole } \\ \text { numbers as the number of groups or the number in each } \\ \text { group in situations of equal groups. For example, describe } \\ \text { a context involving equal groups of objects in which the } \\ \text { number of groups or the number in each group can be } \\ \text { expressed as } 56 \div 8 .\end{array}$	Conceptual	Problem Solving		
Mathematical				
Modeling and Data				
Analysis			$]$	Mathematical
:---				
Modeling and Data				
3.OA.A. 3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, with unknowns in all positions.				
Application				

3.OA.B Major Cluster: Use properties of operations and the relationship between multiplication and division.

Standard	Rigor	SMP Bundle
3.OA.B. 5 Use properties of operations as strategies to multiply and divide. For example, if $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$.	Conceptual	Communicating Reasoning $($ Associative property of multiplication.) Knowing that 8×5 $=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8$ $\times 5)+(8 \times 2)=40+16=56$. (Distributive property.)
3.OA.B.6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding (or remembering) the number that makes 32 when multiplied by $8(\square \times 8=32)$.	Conceptual	Communicating Reasoning

3.OA.C Major Cluster: Multiply and divide within 100.

Standard	Rigor	SMP Bundle
3.OA.C.7 Fluently multiply and divide within 100. By the end of Grade 3, flexibly, efficiently, and accurately find all products of two one-digit numbers.	Procedural	Problem Solving
Note: Fluency of this standard is critical by the end of grade level.		

3.OA.D Major Cluster: Solve problems involving the four operations, and identify and explain patterns in arithmetic.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 3.OA.D.8 Solve two-step word problems using the four } \\ \text { operations. }\end{array}$	Application	$\begin{array}{l}\text { Problem Solving } \\ \text { Mathematical } \\ \text { Modeling and Data } \\ \text { Analysis }\end{array}$
$\begin{array}{l}\text { 3.OA.D.9 Identify arithmetic patterns (including patterns in } \\ \text { the addition table or multiplication table), and explain } \\ \text { them using properties of operations. For example, } \\ \text { observe that 4 times a number is always even, and } \\ \text { explain why 4 times a number can be decomposed into } \\ \text { two equal addends. }\end{array}$	Conceptual	Application

Mathematical

Modeling and Data

Analysis\end{array}\right]\)

Domain: 3.NBT Number and Operations in Base Ten

3.NBT.A Additional Cluster: Calculate with multi-digit numbers.

Standard	Rigor	SMP Bundle
3.NBT.A.1 Round whole numbers to the nearest 10 or 100. For example, rounding 643 to the nearest 10 would be 640; to the nearest 100 would be 600.	Conceptual	Problem Solving
3.NBT.A.2 Use place value, properties of operations and/or relationship between addition and subtraction as strategies to add and subtract within 1000 . For example,	Conceptual	Procedural
412-13 $=412-12-1=400-1=399 ; 505+70=575$.	Problem Solving	
Note: Fluency of this standard is critical by the end of grade level.	Conceptual	Problem Solving
3.NBT.A.3 Use place value and properties of operations to multiply one-digit whole numbers by multiples of 10 in the range 10-90. For example, $9 \times 80,5 \times 60$)	Procedural	

Domain: 3.NF Number and Operations - Fractions

Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.
3.NF.A Major Cluster: Understand fractions as numbers.

Standard	Rigor	SMP Bundle
3.NF.A. 1 Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a whole is partioned into b equal parts; understand a fraction alb as the quantity formed by a parts of size $\frac{1}{b}$	Conceptual	Communicating Reasoning
3.NF.A.2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.	Conceptual	Communicating Reasoning
a. Represent a fraction $\frac{1}{b}$ on a number line diagram		
by defining the interval from 0 to 1 as the whole		
and partitioning it into b equal parts. Recognize		
that each part has size $\frac{1}{b}$ and that the endpoint of		
the part based at 0 locates the number $\frac{1}{b}$ on the		
number line.		

Standard	Rigor	SMP Bundle
3.NF.A. 3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b. Recognize and generate simple equivalent fractions, for example, $\frac{1}{2}=\frac{2}{4}, \frac{4}{6}=\frac{2}{3}$. Explain why the fractions are equivalent, for example, by using a visual fraction model. c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. For example, recognize that $\frac{4}{4}=1$ (four fourths are the same as one whole) because $\frac{4}{4}$ is four parts from a whole partitioned into four equal parts; locate $\frac{4}{4}$ and 1 at the same point on a number line; recognize that $\frac{1}{1}=1\left(\frac{1}{1}\right.$ is the same as 1). Express 3 in the form $3=\frac{3}{1}$; recognize that $\frac{6}{1}=$ 6 ; locate $\frac{4}{4}$ and 1 at the same point of a number line diagram. d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, $=$, or <.	Conceptual	Communicating Reasoning

Domain: 3.MD Measurement and Data

3.MD.A Major Cluster: Solve problems with time, money, and measured quantities.

Standard	Rigor	SMP Bundle
3.MD.A. 1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes.	Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis
3.MD.A. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I) (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving money and measured quantities (masses and liquid volumes). (Excludes multiplicative comparison problems involving notions of "times as much"; (See Problem Types Table 2, page 162 in Appendix). Problems do not require unit conversion.)	Application	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

3.MD.B Supporting Cluster: Solve problems with time, money, and measured quantities.

Standard	Rigor	SMP Bundle
3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.	Application	Problem Solving
3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.	Application	Procedural

3.MD.C Major Cluster: Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

Standard	Rigor	SMP Bundle
3.MD.C. 5 Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	Conceptual	Problem Solving Mathematical Modeling and Data Analysis
3.MD.C. 6 Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).	Conceptual Procedural	Problem Solving Mathematical Modeling and Data Analysis

Standard	Rigor	SMP Bundle
3.MD.C. 7 Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems. c. Be able to represent whole-number products as rectangular areas in mathematical reasoning. For example, be able to illustrate that one can solve the problem of 7×8 by showing that because $8=$ $5+3$, the area of a rectangle with side lengths of 7 units and 8 units equals the sum of 7×5 square units and 7×3 square units. d. Recognize area as additive. Find areas of figures that can be decomposed into non-overlapping rectangles and adding the areas of the nonoverlapping parts, applying this technique to solve real world problems.	Conceptual	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

3.MD.D Additional Cluster: Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

Standard	Rigor	SMP Bundle
3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. For example, Sally purchased 16 meters of fencing to create a rectangular area for her dog, Buttons, to play in. You must use all 16 meters of fence in your answer. What are some rectangles that she could create? What is the area of each? Buttons wants the most area to run around in. Which rectangle would she like best? (solutions: $1 \times 7,2 \times 6,3 \times 5,4 \times 4$ with areas of 7 square meters, 12 square meters, 15 square meters, and 16 square meters, respectively).	Conceptual Procedural Application	Problem Solving Mathematical Modeling and Data Analysis

Domain: 3.G Geometry

3.G.A Supporting Cluster: Reason with shapes and their attributes.

Standard	Rigor	SMP Bundle
3.G.A.1 Understand that shapes in different categories (for example, rhombuses, rectangles, and others) may share attributes (for example, having four sides), and that the shared attributes can define a larger category (for example, quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	Conceptual	Communicating Reasoning
3.G.A.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $\frac{1}{4}$ of the area of the shape.	Procedural	Conceptual
Reasoning		

Fourth Grade

In grade 4, students generalize their understanding of place value to $1,000,000$, seeing that each place value is ten times the value of the place value to the right. Students extend their understanding of addition and subtraction by using the standard algorithm to find larger sums and differences. They apply their understanding of models, place value, and the distributive property, as they discuss and use efficient, accurate, and generalizable methods to fluently compute products and quotients of multi-digit whole numbers. Depending on the numbers and the context, they select and accurately apply appropriate methods to estimate and mentally calculate products and quotients. Students interpret remainders based upon the context.

Students develop understanding of fraction equivalence and operations with fractions. Students use methods for generating equivalent fractions. Students learn how fractions are built from unit fractions, composing unit fractions from unit fractions, decomposing fractions into unit fractions, and using the meaning of fractions and the meaning of multiplication to multiply a fraction by a whole number.

Students describe, analyze, compare, classify, build, and draw two-dimensional shapes.

Grade 4 Overview

Major clusters are bolded; these represent the skills and concepts that should represent 6585\% of instructional time.

Operations and Algebraic Thinking (OA)

- Use the four operations with whole numbers to solve problems.
- Gain familiarity with factors and multiples.
- Analyze a number sequence that follows a given rule.

Number and Operations in Base Ten (NBT)

- Generalize place value understanding for multi-digit whole numbers up to 1,000,000.
- Calculate with multi-digit numbers.

Number and Operations-Fractions (NF)

- Extend understanding of fraction equivalence and ordering.
- Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
- Understand decimal notation for fractions for tenths and hundredths.

Measurement and Data (MD)

- Solve problems involving conversion of measurements from a larger unit to a smaller unit.
- Represent and interpret data using a line plot.
- Understand the concept of angle and measure angles.

Geometry (G)

- Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

Domain: 4.OA Operations and Algebraic Thinking

4.OA.A Major Cluster: Use the four operations with whole numbers to solve problems.

Standard	Rigor	SMP Bundle
4.OA.A.1 Interpret a multiplication equation as a comparison and represent verbal statements of multiplicative comparisons as multiplication equations. For example, write $35=7 \times 5$ to represent the statement that a 35-foot-long whale shark is 7 times as long as a 5-foot- long reef shark.	Conceptual	Problem Solving
4.OAthematical involving multiplicative comparison, distinguishing multiplicative comparison from additive comparison. Be able to use drawings and equations with a variable for the unknown number to represent the problem.	Modeling and Data Analysis	
For example, Tom's pencil is 4 times as long as Julie's pencil. Tom's pencil is 8 inches long. How long is Julie's pencil? (multiplicative comparison)		Application

4.OA.B Supporting Cluster: Gain familiarity with factors and multiples.

Standard	Rigor	SMP Bundle
4.OA.B.4 Be able to find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.	Conceptual	Communicating Reasoning

4.OA.C Additional Cluster: Analyze a number sequence that follows a given rule.

Standard	Rigor	SMP Bundle
4.OA.C. 5 Given the rule for a sequence of numbers, identify apparent features of the sequence that were not explicit in the rule itself. For example, given the rule "Add 3" and the number sequence 1, 4, 7, 10, 13 observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.	Procedural	Conceptual Reasoning

Domain: 4.NBT Numbers and Operations in Base Ten

4.NBT.A Major Cluster: Generalize place value understanding for multi-digit whole numbers up to $1,000,000$.

Standard	Rigor	SMP Bundle
4.NBT.A.1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what that same digit represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.	Conceptual	Communicating Reasoning
4.NBT.A.2 Read and write multi-digit whole numbers using base-ten numerals (standard form), number names (word form), and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparisons.	Procedural	Conceptual
Communicating Reasoning		
4.NBT.A.3 Use place value understanding to round multi- digit whole numbers to any place. For example, 435,450 rounded to the nearest ten-thousands place is 440,000 because it is more than halfway between 430,000 and	Conceptual	Procedural

4.NBT.B Major Cluster: Calculate with multi-digit numbers.

Standard	Rigor	SMP Bundle
4.NBT.B.4 Fluently add and subtract multi-digit whole numbers up to 1,000,000 using the standard algorithm. Additional algorithms may include partial sums, partial differences, counting or adding up in increments. Note: Fluency of this standard is critical by the end of grade level.	Procedural	Problem Solving
4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Be able to illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Procedural	Conceptual Communicating Reasoning
Problem Solving		
4.NBT.B.6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Procedural	Conceptual Communicating Reasoning

Domain: 4.NF Numbers and Operations - Fractions

Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8$, 10,12 , and 100.
4.NF.A Major Cluster: Extend understanding of fraction equivalence and ordering.

Standard	Rigor	SMP Bundle
4.NF.A.1 Be able to illustrate and explain numerical statements of fraction equivalence by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and write equivalent fractions.	Conceptual	Problem Solving
4.NF.A.2 Compare two fractions with different numerators and different denominators, by creating common denominators or numerators, comparing to a benchmark fraction such as $\frac{1}{2}$ and/or by using a visual fraction model.	Conceptual	Problem Solving
Remmunicating Reasoning Rractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions.	Communicating Reasoning	

4.NF.B Major Cluster: Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

Standard	Rigor	SMP Bundle
4.NF.B. 3 Understand a fraction $\frac{a}{b}$ with $a>1$ as a sum of fractions $\frac{1}{b}$. For example, $\frac{3}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Be able to justify decompositions, for example, by using a visual fraction model. For examples: $\frac{3}{8}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}+\frac{2}{8} ; 2 \frac{1}{8}=1+1+\frac{1}{8}=\frac{8}{8}+\frac{8}{8}+$ $\frac{1}{8}$ a. Add and subtract mixed numbers with like denominators, and show sums and differences of mixed numbers on a number line diagram. b. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, by using visual fraction models and or equations to represent the problem.	Conceptual Procedural	Problem Solving Mathematical Modeling and Data Analysis
4.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Using a visual fraction model, understand a fraction with a numerator greater than 1 is a multiple of a unit fraction. For example, using a number line to show $\frac{5}{4}$ as the product of $5 \times \frac{1}{4}$. b. Multiply a fraction by a whole number using the principle that the product is the whole number times the numerator of the fraction with the same denominator. c. Solve word problems involving multiplication of a fraction by a whole number. Use visual fraction models and/or equations to represent the problem.	Conceptual Procedural	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

4.NF.C Major Cluster: Understand decimal notation for fractions for tenths and hundredths.

Standard	Rigor	SMP Bundle
4.NF.C. 5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100 . For example, express $\frac{3}{10}$ as $\frac{30}{100}$, and add $\frac{3}{10}+\frac{4}{100}=\frac{34}{100}$. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.)	Conceptual Procedural	Problem Solving
4.NF. 6 Use decimal notation for fractions with denominators 10 or 100 . For example, rewrite 0.62 as $\frac{62}{100}$ and locate 0.62 on a number line.	Conceptual Procedural Application	Problem Solving
4.NF.C. 7 Compare two decimals to hundredths by reasoning about their size, recording the results of comparisons with the symbols >, $=$, or <. Recognize that comparisons are valid only when the two decimals refer to the same whole. Show decimals on a number line diagram, and be able to justify numerical statements of decimal comparison by using a visual fraction model.	Conceptual	Problem Solving Communicating Reasoning

Domain: 4.MD Measurement and Data

4.MD.A Supporting Cluster: Solve problems involving conversion of measurements from a larger unit to a smaller unit.

Standard	Rigor	SMP Bundle
4.MD.A. 1 Know relative sizes of measurement units within one system of measurement, including $\mathrm{km}, \mathrm{m}, \mathrm{cm}$; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit by using multiplication. For example, record measurement equivalents in a twocolumn table, know that 1 ft is 12 times as long as 1 in or express the length of a 4 ft snake as 48 in .	Conceptual Procedural	Problem Solving Mathematical Modeling and Data Analysis
4.MD.A. 2 Use the four operations to solve word problems involving distances, intervals of time (including elapsed time), liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit.	Application	Problem Solving Mathematical Modeling and Data Analysis
4.MD.A. 3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	Procedural Application	Problem Solving Mathematical Modeling and Data Analysis

4.MD.B Supporting Cluster: Represent and interpret data using a line plot.

Standard	Rigor	SMP Bundle
4.MD.B.4 Make a line plot to display a data set of measurements using the fractions $\frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{8}{8}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$,	Application	Mathematical Modeling and Data $\frac{4}{4}, \frac{1}{2}, \frac{2}{2}$ Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest pencils in a collection.

4.MD.C Additional Cluster: Geometric measurement: understand the concept of angle and measure angles.

Standard	Rigor	SMP Bundle
4.MD.C. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:	Conceptual	Problem Solving
a. An angle is measured with reference to a circle with its center at the common endpoint of the angle's rays. An angle that turns through $\frac{1}{360}$ of a circle is called a "one-degree angle," and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees. For example, an angle that turns through 45 one- degree angles has an angle measure of 45 degrees.	Mathematical Modeling and Data Analysis	
4.MD.C.6 Draw and measure angles in whole-number degrees (1-180 $)$ using a protractor.	Procedural	Problem Solving

Updated 1/4/24

Standard	Rigor	SMP Bundle		
4.MD.C.7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, for example, by using an equation with a symbol for the unknown angle measure.	Application	Conceptual	Problem Solving	Analysis
:---				
Modematical				
Anderata				

Domain: 4.G Geometry

4.G.A Additional Cluster: Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

Standard	Rigor	SMP Bundle
4.G.A.1 Draw points, lines, line segments, rays, angles (acute, right, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	Conceptual Procedural	Communicating Reasoning
4.G.A.2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines. Classify acute, right, and obtuse triangles based on the measure of the angles.	Application	Communicating Reasoning
4.G.A.3 Recognize a line of symmetry for a two- dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.	Conceptual	Communicating Reasoning

Fifth Grade

In grade 5, instructional time should focus on three critical areas: (1) develop flexibility with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.
(1) Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop flexibility in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)
(2) Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They continue to work with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop flexible thinking in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.
(3) Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1 -unit by 1 -unit by 1 -unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose threedimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real world and mathematical problems.

Grade 5 Overview

Major clusters are bolded; these represent the skills and concepts that should represent 65$85 \%$ of instructional time.

Operations and Algebraic Thinking (OA)

- Write and interpret numerical expressions.
- Analyze a pair of number sequences.

Number and Operations in Base Ten (NBT)

- Understand the place value system.
- Perform operations with multi-digit whole numbers and with decimals to hundredths.

Number and Operations-Fractions (NF)

- Use equivalent fractions as a strategy to add and subtract fractions.
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Measurement and Data (MD)

- Convert like measurement units within a given measurement system.
- Represent and interpret data.
- Geometric measurement: understand concepts of volume and relate volume to multiplication and addition.

Geometry (G)

- Graph points on the coordinate plane to solve real-world and mathematical problems.
- Classify two-dimensional figures into categories based on their properties.

Domain: 5.OA Operations and Algebraic Thinking

5.OA.A Additional Cluster: Write and interpret numerical expressions.

Standard	Rigor	SMP Bundle
5.OA.A. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols, including expressions in which whole numbers and fractions appear.	Procedural	Problem Solving
5.OA.A.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by $\frac{1}{2}$ as $\frac{1}{2} \times(8+7)$ Recognize that $3 \times\left(\frac{18}{19}+\frac{2}{3}\right)$ is three times as large as $\frac{18}{19}+\frac{2}{3}$, without having to calculate the indicated sum or product.	Conceptual	Communicating

5.OA.B Additional Cluster: Analyze a pair of number sequences.

Standard	Rigor	SMP Bundle
5.OA.B.3 Given rules for two number sequences, identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	Procedural	
Conceptual	Communicating Reasoning	

Domain: 5.NBT Numbers and Operations in Base Ten

5.NBT.A Major Cluster: Understand the place value system.

Standard	Rigor	SMP Bundle
5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $\frac{1}{10}$ of what it represents in the place to its left.	Conceptual	Communicating Reasoning
5.NBT.A. 2 Use patterns in the number of zeros of the product when multiplying a number by powers of 10 , and use patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10.	Conceptual Procedural	Communicating Reasoning
5.NBT.A. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, For example, $347.392=3 \times 100+4 \times 10+7$ $\times 1+3 \times(0.1)+9 \times(0.01)+2 \times(0.001)$. b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.	Conceptual Procedural	Communicating Reasoning
5.NBT.A. 4 Use place value understanding to round decimals to any place. Clarification: 5.43 rounded to the tenths is 5.4 , NOT 5.40 (How would you read each number? five and four tenths vs. five and forty hundredths)	Conceptual Procedural	Communicating Reasoning

5.NBT.B Major Cluster: Perform operations with multi-digit whole numbers and with decimals to hundredths.

Standard	Rigor	SMP Bundle
5.NBT.B.5 Fluently multiply multi-digit whole numbers including using the standard algorithm. Other algorithms may include partial products, area model.	Procedural	Problem Solving
Note: Fluency of this standard is critical by the end of grade level.	Mathematical Modeling and Data Analysis	
$\left.\begin{array}{l}\text { 5.NBT.B.6 Find whole-number quotients of whole numbers } \\ \text { with up to four-digit dividends and two-digit divisors (For } \\ \text { example, }, 5,592 \\ \text { 24 }\end{array}\right)$	Conceptualusing strategies based on place value, the properties of operations, and/or the relationship between multiplication and division, including the standard algorithm. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Procedural

Domain: 5.NF Number and Operations - Fractions

5.NF.A Major Cluster: Use equivalent fractions as a strategy to add and subtract fractions.

Standard	Rigor	SMP Bundle
5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers). For example, $\frac{2}{3}+$ $\frac{5}{4}=\frac{8}{12}+\frac{15}{12}=\frac{23}{12}$. (In general, $\left.\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}\right)$.	Procedural	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis
5.NF.A. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, for example, by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, my friend and I each have some lemons. We need 1 cup of lemon juice to make lemonade. If I squeeze $\frac{1}{2}$ cup of lemon juice and my friend squeezes $\frac{2}{5}$ a cup of lemon juice how much lemon juice do we have? Is it enough?	Application	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

5.NF.B Major Cluster: Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Standard	Rigor	SMP Bundle
5.NF.B. 3 Understand that a fraction is the division of the numerator by the denominator $\left(\frac{a}{b}=\mathrm{a} \div \mathrm{b}\right)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, by using visual fraction models or equations to represent the problem. For example, if 9 people want to share a $50-$ pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	Conceptual Application	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis
5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. (This standard does not include mixed numbers) a. Interpret the product $\left(\frac{a}{b}\right) \times q$ as a part of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. Recognize that $\frac{1}{b} \times \mathrm{q}=\mathrm{q} \div \mathrm{b}$ (dividing by a whole is the same as multiplying by the reciprocal. For example, use a visual fraction model to show $\left(\frac{2}{3}\right) \times 4=\frac{8}{3}$, and create a story context for this equation. Do the same with $\left(\frac{2}{3}\right) \times\left(\frac{4}{5}\right)=\frac{8}{15}$. (In general, $\left(\frac{a}{b}\right) \times\left(\frac{c}{d}\right)=\frac{a c}{b d}$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas	Conceptual Procedural	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

Standard	Rigor	SMP Bundle
5.NF.B.5 Interpret multiplication as scaling (resizing) by:	Conceptual	Problem Solving
a.Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b.Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $\frac{a}{b}=(n \times a) /(n \times b)$ to the effect of multiplying $\frac{a}{b}$ by 1. Mathematical Modeling and Data Analysis 4.NF.B. 6 Solve real world problems involving multiplication of fractions and mixed numbers, for example, by using visual fraction models or equations to represent the problem. Application	Problem Solving	

Standard	Rigor	SMP Bundle
5.NF.B.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (This standard does not include dividing fractions by fractions $).$	Procedural	Conceptual Mathematical Modeling and Data Analysis
a.Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $\left(\frac{1}{3}\right) \div 4$, and use	Application	
a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $\left(\frac{1}{3}\right) \div 4=\frac{1}{12}$ because $\left(\frac{1}{12}\right) \times 4=\frac{1}{3}$.		
b.Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div\left(\frac{1}{5}\right)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div\left(\frac{1}{5}\right)=20$ because $20 \times\left(\frac{1}{5}\right)=4$.		
c.Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions. For example, by using visual fraction models and equations to represent the problem: how much chocolate will each person get if 3 people share $\frac{1}{2}$ Ib of chocolate		
equally? How many $\frac{1}{3}$ cup servings are in 2 cups of raisins?		

Domain: 5.MD Measurement and Data

5.MD.A Supporting Cluster: Convert like measurement units within a given measurement system.

Standard	Rigor	SMP Bundle
5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (for example, convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	Application	Mathematical Modeling and Data Analysis

5.MD.B Supporting Cluster: Represent and interpret data.

Standard	Rigor	SMP Bundle
5.MD.B.2 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Use operations on fractions to solve problems involving information presented in line plots.	Application	Mathematical Modeling and Data Analysis

5.MD.C Major Cluster: Geometric measurement: understand concepts of volume and relate volume to multiplication and addition.

Standard	Rigor	SMP Bundle
5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.	Conceptual	Problem Solving
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.	Mathematical Modeling and Data Analysis	
5.MD.C.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	Conceptual	Problem Solving
Procedural	Mathematical Modeling and Data Analysis	

Standard	Rigor	SMP Bundle
5.MD.C. 5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be if found by multiplying the edge lengths or equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes to represent the associative property of multiplication. b. Apply the formulas $V=I \times w \times h$ and $V=B \times h$ (where B stands for the area of the base) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts (composite figures), applying this technique to solve real world problems. For example, find the volume of composite figures.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling and Data Analysis

Domain: 5.G Geometry

5.G.A Additional Cluster: Graph points on the coordinate plane to solve real-world and mathematical problems.

Standard	Rigor	SMP Bundle		
$\begin{array}{l}\text { 5.G.A.1 Use a pair of perpendicular number lines, called } \\ \text { axes, to define a coordinate system, with the intersection } \\ \text { of the lines (the origin) arranged to coincide with the 0 on } \\ \text { each line and a given point in the plane located by using } \\ \text { an ordered pair of numbers, called its coordinates. Plot } \\ \text { points in the first quadrant of a coordinate plane. } \\ \text { Understand that the first number indicates how far to travel } \\ \text { from the origin in the direction of the } x \text {-axis (horizontal), } \\ \text { and the second number indicates how far to travel in the } \\ \text { direction of the } y \text {-axis (vertical), with the convention that } \\ \text { the names of the two axes and the coordinates correspond } \\ \text { (x, y). }\end{array}$	Conceptual	Problem Solving		
$\begin{array}{l}\text { 5.G.A.2 Represent real world and mathematical problems } \\ \text { by graphing points in the first quadrant of the coordinate } \\ \text { plane, and interpret coordinate values of points in the } \\ \text { context of the situation. }\end{array}$	Conceptual	Procedural		
Modeling and Data				
Analysis			$\}$	Problem Solving
:---				
Mathematical				
Modeling and Data				
Analysis				

5.G.B Additional Cluster: Classify two-dimensional figures into categories based on their properties.

Standard	Rigor	SMP Bundle
5.G.B.3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	Conceptual	Communicating Reasoning
5.G.B.4 Classify two-dimensional figures in a hierarchy based on properties.	Conceptual	Communicating Reasoning

Standards for Mathematical Practice: Grades 6-8

SMP1: Make sense of problems and persevere in solving them.

Mathematically proficient middle school students set out to understand a problem and then look for entry points to its solution. They analyze problem conditions and goals, translating, for example, verbal descriptions into equations, diagrams, or graphs as part of the process. They consider analogous problems, and try special cases and simpler forms of the original in order to gain insight into its solution. For example, to understand why a 20% discount followed by a 20% markup does not return an item to its original price, they might translate the situation into a tape diagram or a general equation; or they might first consider the situation for an item priced at $\$ 100$. Mathematically proficient students can explain how alternate representations of problem conditions relate to each other. For example, they can identify correspondences between the solution to a word problem that uses only arithmetic and a solution that uses variables and algebra; and they can navigate among tables, graphs, and equations representing linear relationships to gain insights into the role played by constant rate of change. Mathematically proficient students check their approach, continually asking themselves "Does this approach make sense?" and "Can I solve this problem in a different way?" While working on a problem, they monitor and evaluate their progress and change course if necessary. They can understand the approaches of others to solving complex problems and compare approaches.

SMP 2: Reason abstractly and quantitatively.

Mathematically proficient middle school students make sense of quantities and relationships in problem situations. For example, they can apply ratio reasoning to convert measurement units and proportional relationships to solve percent problems. They represent problem situations using symbols and then manipulate those symbols in search of a solution (decontextualize). They can, for example, solve problems involving unit rates by representing the situations in equation form. Mathematically proficient students also pause as needed during problem solving to double-check the meaning of the symbols involved. In the process, they can look back at the applicable units of measure to clarify or inform solution steps (contextualize). Students can integrate quantitative information and concepts expressed in text and visual formats. Quantitative reasoning also entails knowing and flexibly using different properties of operations and objects. For example, in middle school, students use properties of operations to generate equivalent expressions and use the number line to understand multiplication and division of rational numbers.

SMP 3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient middle school students understand and use assumptions, definitions, and previously established results in constructing verbal and written arguments. They make and explore the validity of conjectures. They can recognize and appreciate the use of counter examples, for example, using numerical counterexamples to identify common errors in algebraic manipulation, such as thinking that $5-2 x$ is equivalent to $3 x$. Conversely given a pair of equivalent algebraic expressions, they can show that the two expressions name the same number regardless of which value is substituted into them by showing which properties of operations can be applied to transform one expression into the other. They can explain and justify their conclusions to others using numerals, symbols, and visuals; in turn they can listen and read others' arguments, deciding whether they make sense and asking questions to clarify the arguments. They also reason inductively about data, making plausible arguments that take
into account the context from which the data arose. For example, they might argue that the great variability of heights in their class is explained by growth spurts, and that the small variability of ages is explained by school admission policies. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument, explain what it is. Students engage in collaborative discussions, drawing on evidence from problem texts and arguments of others, follow conventions for collegial discussions, and qualify their own views in light of evidence presented. They consider questions such as "How did you get that?", "Why is that true?" and "Does that always work?"

SMP 4: Model with mathematics.

Mathematically proficient middle school students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. This might be as simple as translating a verbal or written description to a drawing or mathematical expression. It might entail using the mathematics of proportional relationships to plan a school event, or using data to analyze a problem in the community. Mathematically proficient students are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. For example, they can roughly fit a line to a scatter plot to make predictions and gather experimental data to approximate a probability. They are able to identify important quantities in a given relationship such as rates of change and represent situations using such tools as diagrams, tables, graphs, flow charts and formulas. They can analyze their representations mathematically, use the results in the context of the situation, and then reflect on whether the results make sense while possibly improving the model.

Note: Although physical objects and drawings can be used to model a situation, using these tools absent a contextual situation is not an example of practice standard SMP4. For example, drawing an area model to illustrate the distributive property in $4(t+s)=4 t+4 s$ would not be an example of practice standard SMP4. SMP4 is about applying math to a problem in context.

SMP 5: Use appropriate tools strategically.

Mathematically proficient middle school students strategically consider the available tools when solving a mathematical problem and while exploring a mathematical relationship. These tools might include pencil and paper, concrete models, a ruler, a protractor, a graphing calculator, a spreadsheet, a statistical package, or dynamic geometry software. Proficient students make sound decisions about when each of these tools might be helpful, recognizing both the insights to be gained and their limitations. For example, they use estimation to check reasonableness; graph functions designed by expressions to picture the way one quantity depends on another; use algebra tiles to see how the properties of operations familiar from the elementary grades continue to apply to algebraic expressions; use graphing calculators to approximate solutions to systems of equations; use spreadsheets to analyze data sets of realistic size; or use dynamic geometry software to discover properties of parallelograms. Students are also strategic about when not to use tools, such as by simplifying an expression before substituting values into it (SMP 7), or rounding the inputs to a calculation and calculating on paper when an approximate answer is enough (SMP 6). When making mathematical models, students know that technology can enable them to visualize the results of their assumptions, to explore consequences, and to compare predictions with data. Mathematically proficient students are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems.

SMP 6: Attend to precision.

Mathematically proficient middle school students communicate precisely to others both verbally and in writing. They represent claims and findings, emphasizing salient points in a focused, coherent matter with relevant evidence, sound and valid reasoning, well-chosen details, and precise language. They use clear definitions in discussion with others and in their own reasoning and determine the meaning of symbols, terms, and phrases as used in specific mathematical contexts. For example, they can use the definition of rational numbers to explain why a number is irrational and describe congruence and similarity in terms of transformations in the plane. They state the meaning of the symbols they choose, consistently and appropriately, such as inputs and outputs represented by function notation. They are careful about specifying units of measure, and label axes to display the correct correspondence between quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate to the context. For example, they accurately apply scientific notation to large numbers and use measures of center to describe data sets. Diligence and attention to detail are mathematical virtues: mathematically proficient students care that an answer is right; they check their work; they solve the problem another way; they take responsibility for careless mistakes and correct them.

SMP 7: Look for and make use of structure.

Mathematically proficient middle school students look closely to discern a pattern or structure. They might use a structure of the number line to demonstrate that the distance between two rational numbers is the absolute value of their difference, ascertain the relationship between slopes and solution sets of systems of linear equations, and see that the equation $3 x=2 y$ represents a proportional relationship with a unit rate of $\frac{3}{2}=1.5$. They might recognize how the Pythagorean Theorem is used to find distances between points in the coordinate plane and identify right triangles that can be used to find the length of a diagonal in a rectangular prism. They can also step back for an overview and shift perspective, as in finding a representation of consecutive numbers that shows all sums of three consecutive whole numbers are divisible by 6 . They can see complicated things as single objects, such as seeing two successive reflections across parallel lines as a translation along a line perpendicular to the parallel lines or understanding $1.05 a$ as an original value, a, plus 5% of that value, 0.05 a.

SMP 8: Look for and express regularity in repeated reasoning.

Mathematically proficient middle school students notice if calculations are repeated, and look for both general methods and shortcuts. Working with tables of equivalent ratios, they might deduce the corresponding multiplicative relationships and make generalizations about the relationship to rates. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , students might abstract the equation $\frac{y-2}{x-1}=3$. Noticing the regularity with each interior angle sums increase with the number of sides in a polygon might lead them to the general formula for the interior angle sum of an n gon. As they work to solve a problem, mathematically proficient students maintain oversight of the process while attending to the details. They continually evaluate the reasonableness of their immediate results.

Sixth Grade

In grade 6, instructional time should focus on four critical areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; and (4) developing understanding of statistical thinking.
(1) In grade 6, students take a significant step from the work they did in previous grades of multiplying and dividing with particular quantities in word problems, to using reasoning about multiplication and division in situations in which two variable quantities vary together in a proportional relationship. Thus, students expand the scope of situations in which they can use multiplication and division to solve problems, including scientific problems and problems of financial literacy. Students connect their understanding of multiplication and division with ratios and rates, and they connect ratios and fractions. They construct and analyze tables, such as tables of quantities that are in equivalent ratios, and use equations (such as $3 x=y$) to describe relationships.
(2) Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multiplication and division to understand and explain why procedures for dividing fractions make sense, and they divide fractions to solve problems. Students extend previous understandings of numbers to the full system of rational numbers, which includes negative rational numbers. They reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of the coordinate plane.
(3) Students understand the use of variables in mathematical expressions and use expressions and formulas to solve problems. Students understand that expressions in different forms can be equivalent and they use properties of operations to rewrite expressions in equivalent forms. Students know that solutions of an equation are values of the variables that make the equation true. They use properties of operations and the idea of maintaining the equality of both sides of an equation to solve simple equations.
(4) Building upon their previous data work, students think statistically, appreciating the concepts of statistical variability and distribution. Students recognize that a data distribution may not have a definite center and that there are different ways to measure center. The median measures enter in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range) can also be useful for summarizing data because two very different sets of data can have the same mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected.
(5) Students also build on their work with area in elementary school by reasoning about relationships among shapes to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, students discuss and justify formulas for areas of triangles and parallelograms. Students find areas of polygons and surface areas of prisms and pyramids by decomposing them into pieces
whose area they can determine. They reason about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to fractional side lengths.

Grade 6 Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

Ratios and Proportional Relationships (RP)

- Apply ratio concepts and use ratio reasoning to solve problems.

The Number System (NS)

- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Expressions and Equations (EE)

- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.

Geometry (G)

- Solve real-world and mathematical problems involving area, surface area, and volume.

Statistics and Probability (SP)

- Develop understanding of statistical variability.
- Summarize and describe distributions.

Domain: 6.RP Ratios and Proportional Relationships

6.RP.A Major Cluster: Apply ratio concepts and use ratio reasoning to solve problems.

Standard	Rigor	SMP Bundle
6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."		Conceptual
6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $\frac{3}{4}$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger." Expectations for unit rates in this grade are limited to non-complex fractions.	Conceptual	Mathematical
Modeling \& Data		
Analysis		

Domain: 6.NS The Number System

6.NS.A Major Cluster: Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

Standard	Rigor	SMP Bundle
6.NS.A.1 Use and interpret models to compute quotients of fractions. Solve word problems involving division of fractions by fractions. Be able to use visual fraction models and equations to represent the problem. For example, create a story context for $\left(\frac{2}{3}\right) \div\left(\frac{3}{4}\right)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $\left(\frac{2}{3}\right) \div\left(\frac{3}{4}\right)=\frac{8}{9}$ because $\frac{3}{4}$ of $\frac{8}{9}$ is $\frac{2}{3}$. (In general,	Application	Procedural
$\left.\left(\frac{a}{b}\right) \div\left(\frac{c}{d}\right)=\frac{a d}{b c}\right)$ If $\frac{2}{3}$ of a shoelace is $\frac{1}{2}$ meter long, how		
many meters long is the shoelace? How many $\frac{3}{4}$ cup	Communicating Reasoning Mathematical	
servings are in $\frac{2}{3}$ of a cup of yogurt? How wide is a		
rectangular strip of land with length $\frac{3}{4}$ mi and area $\frac{1}{2}$		Modeling \& Data Analysis
square mi?		

6.NS.B Additional Cluster: Compute with multi-digit numbers and find common factors and multiples.

Standard	Rigor	SMP Bundle
6.NS.B.2 Divide multi-digit numbers using the standard algorithm. For up to 4 digit by 1 digit division by hand; more complicated cases using technology.	Procedural	Problem Solving
6.NS.B.3 Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. For more complex cases, use technology.	Procedural	Problem Solving

Updated 1/4/24

Standard	Rigor	SMP Bundle
6.NS.B.4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12.	Conceptual	Procedural
Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2).		

6.NS.C Major Cluster: Apply and extend previous understandings of numbers to the system of rational numbers.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 6.NS.C.5 Describe quantities having opposite directions } \\ \text { or values using positive and negative numbers (for } \\ \text { example, temperature above/below zero, elevation } \\ \text { above/below sea level, credits/debits, positive/negative } \\ \text { electric charge); use positive and negative numbers to } \\ \text { represent quantities in real-world contexts, explaining the } \\ \text { meaning of 0 in each situation. }\end{array}$	Conceptual	Application

Communicating

Reasoning\end{array}\right]\)| Mathematical |
| :--- |
| Modeling \& Data |
| Analysis |

Standard	Rigor	SMP Bundle
6.NS.C. 6 Represent a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself. For example, $-(-3)=3$, and that 0 is its own opposite. b. Describe locations in the coordinate plane using signed numbers in ordered pairs; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	Conceptual	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
6.NS.C. 7 Compare, order and describe the absolute value of rational numbers. a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>$ -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right. b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that -3 oC is warmer than $-7^{\circ} \mathrm{C}$. c. Describe the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars. d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	Conceptual	Problem Solving Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
6.NS.C.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	Conceptual	Procedural

Domain: 6.EE Expressions and Equations

6.EE.A Major Cluster: Apply and extend previous understandings of arithmetic to algebraic expressions.

Standard	Rigor	SMP Bundle
6.EE.A. 1 Write and evaluate numerical expressions involving whole-number exponents.	Conceptual Procedural	Problem Solving
6.EE.A. 2 Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5 " as $5-y$. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=\frac{1}{2}$.	Procedural Application	Problem Solving Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
6.EE.A.3 Apply the properties of operations to generate equivalent expressions. Know that expressions are called equivalent when they name the same number regardless of which value is substituted into them. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x ;$ apply the distributive property to the expression $24 x+$ 18y to produce the equivalent expression 6(4x $+3 y) ;$ apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	Application	Procedural Communicating Reasoning
6.EE.A.4 Describe the properties of operations used to show two expressions are equivalent. For example, show that $3 c+3 c d$ and $3 c(1+d)$ are equivalent.	Conceptual	Problem Solving

6.EE.B Major Cluster: Reason about and solve one-variable equations and inequalities.

Standard	Rigor	SMP Bundle
6.EE.B. 5 Use substitution to determine whether a given number in a specified set makes an equation or inequality true. For example, know solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true?	Conceptual Procedural	Problem Solving Mathematical Modeling \& Data Analysis
6.EE.B. 6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	Conceptual Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle		
6.EE.B.7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	Procedural	Application		Problem Solving
:---				
Mathematical Modeling \& Data Analysis				
6.EE.B.8 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that an inequality of the form $x>c$ or $x<c$ has infinitely many solutions; use a number line diagram to represent infinitely many solutions of such an inequality.				
Application				

6.EE.C Major Cluster: Represent and analyze quantitative relationships between dependent and independent variables.

Standard	Rigor	SMP Bundle
6.EE.C.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity in terms of the other quantity. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.	Application	Conceptual Communicating Reasoning

Domain: 6.G Geometry

6.G.A Supporting Cluster: Solve real-world and mathematical problems involving area, surface area, and volume.

Standard	Rigor	SMP Bundle
6.G.A.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	Application	Mathematical Modeling \& Data Analysis
6.G.A.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=/$ wh	Procedural	Application
$V=/ w h)$ and $V=B h(V=B h)$ (where B stands for the area of the base) to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real- world and mathematical problems.	Mathematical Modeling \& Data Analysis	
6.G.A.3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	Application	Procedural

Domain: 6.SP Statistics and Probability

6.SP.A Additional Cluster: Develop understanding of statistical variability.

Standard	Rigor	SMP Bundle
6.SP.A.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	Conceptual	Mathematical Modeling \& Data Analysis
6.SP.A.2 Describe a set of data collected to answer a statistical question that has a distribution which can be described by its center, spread, and overall shape.	Conceptual	Mathematical Modeling \& Data Analysis
6.SP.A.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	Conceptual	Mathematical Modeling \& Data
Analysis		

6.SP.B Additional Cluster: Summarize and describe distributions.

Standard	Rigor	SMP Bundle
6.SP.B.4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	Conceptual	Mathematical Modeling \& Data Analysis
6.SP.B. 5 Summarize numerical data sets in relation to their context, such as by:	Conceptual	Mathematical
Modeling \& Data a. Reporting the number of observations. b.Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. c.Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. Analysis		
d.Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Application	

Seventh Grade

In grade 7, instructional time should focus on four critical areas: (1) developing understanding of and applying proportional relationships; (2) developing understanding of operations with rational numbers and working with expressions and linear equations; (3) solving problems involving scale drawings and informal geometric constructions, and working with two- and threedimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about populations based on samples.
(1) In grade 7, students deepen their understanding and skill in proportional relationships. They use their understanding of ratios, rates, and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students in this grade graph proportional relationships from other relationships. Students solve problems about scale drawings by relating corresponding lengths between the objects or by using the fact that relations of lengths within an object are preserved in similar objects.
(2) Students unify their understanding of numbers, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. They extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (for example, amounts owed or temperatures below zero), students explain and interpret the generalizations for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems.
(3) Students continue their work with area from grade 6, solving problems involving the area and circumference of a circle and surface area of three-dimensional objects. In preparation for work on congruence and similarly in grade 8 they reason about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they gain familiarity with the relationships between angles formed by intersecting lines. Students work with threedimensional figures, relating them to two-dimensional figures by examining cross-sections. They solve real-world and mathematical problems involving area, surface area, and volume of twoand three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
(4) Students build on their previous work with single data distribution to compare two data distributions and address questions about differences between populations. They begin informal work with random sampling to generate data sets and learn about the importance of representative samples for drawing inferences. They calculate probabilities based on assumptions about chance processes, and compare probabilities to relative frequencies observed in experiments and simulations.

Grade 7 Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

Ratios and Proportional Relationships (RP)

- Analyze proportional relationships and use them to solve real-world and mathematical problems.

The Number System (NS)

- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

Expressions and Equations (EE)

- Use properties of operations to generate equivalent expressions.
- Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Geometry (G)

- Draw, construct and describe geometrical figures and describe the relationships between them.
- Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

Statistics and Probability (SP)

- Use random sampling to draw inferences about a population.
- Draw informal comparative inferences about two populations.
- Investigate and model chance processes.

Domain: 7.RP Ratios and Proportional Relationships

7.RP.A Major Cluster: Analyze proportional relationships and use them to solve real-world and mathematical problems.

Standard	Rigor	SMP Bundle
7.RP.A. 1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $\frac{1}{2}$ mile in each $\frac{1}{4}$ hour, compute the unit rate as the complex fraction $\frac{\frac{1}{2}}{\frac{1}{4}}$ miles per hour, equivalently 2 miles per hour. Give a reason why it is a better value to purchase a supply of an item at a cost of $\$ 22.50$ for ten pounds than at a cost of $\$ 1.50$ for $\frac{1}{2}$ pound.	Procedural Application	Problem Solving Mathematical Modeling \& Data Analysis
7.RP.A. 2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, for example by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	Conceptual Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
7.RP.A.3 Use proportional relationships to solve multistep ratio and percent problems. For example: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	Application	Mathematical Modeling \& Data Analysis

Domain: 7.NS The Number System

7.NS.A Major Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

Standard	Rigor	SMP Bundle
7.NS.A. 1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Describe $p+q$ as a number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Describe subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
7.NS.A.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	Conceptual	Problem Solving
a.Use properties of operations, particularly the distributive property, leading to generalizations for products such as (-1)(-1)=1 for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	Application	Mathematical Modeling \& Data Analysis
bse properties of operations, particularly the		
distributive property, leading to generalizations for		
quotients of integers (provided that the divisor is		
not zero). If p and q are integers, then -pq=-		
pq=p(-q). Interpret quotients of rational numbers		
by describing real-world contexts.		
c.Multiply and divide rational numbers. d. Convert a rational number to a decimal; know that the decimal form of a rational number terminates in Os or eventually repeats.	Application	Mathematical
Modeling \& Data Analysis		
7.NS.A. 3 Solve real-world and mathematical problems involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions.	Procedural	Problem Solving

Domain: 7.EE Expressions and Equations

7.EE.A Major Cluster: Use properties of operations to generate equivalent expressions.

Standard	Rigor	SMP Bundle
7.EE.A.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Conceptual Procedural	Problem Solving Communicating Reasoning
7.EE.A.2 Describe how rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a ~ m e a n s ~ t h a t ~ " i n c r e a s e ~ b y ~ 5 \% " ~$ is the same as "multiply by 1.05."	Conceptual	Problem Solving

7.EE.B Major Cluster: Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Standard	Rigor	SMP Bundle		
7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example, If someone making $\$ 25$ an hour gets a 10% raise, that is an additional $\frac{1}{10}$ of	Application	Mathematical Modeling \& Data Analysis		
their salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If				
you want to place a towel bar $9 \frac{3}{4}$ inches long in the center				
of a door that is $27 \frac{1}{2}$ inches wide, you will need to place				
the bar about 9 inches from each edge; this estimate can				
be used as a check on the exact computation.			\quad	Problem Solving
:---				

Standard	Rigor	SMP Bundle
7.EE.B. 4 Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.	Conceptual Procedural Application	Problem Solving Mathematical Modeling \& Data Analysis

Domain: 7.G Geometry

7.G.A Additional Cluster: Draw, construct, and describe geometrical figures and describe the relationships between them.

Standard	Rigor	SMP Bundle		
7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	Procedural	Application		Problem Solving
:---				
Mathematical Modeling \& Data Analysis				
7.G.A.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Procedural	Conceptual		
:---	\{roblem Solving	Mathematical		
:---				
Modeling \& Data Analysis				

Updated 1/4/24

Standard	Rigor	SMP Bundle
7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	Conceptual	Problem Solving

7.G.B Additional Cluster: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

Standard	Rigor	SMP Bundle
7.G.B.4 Determine the formula needed and use it to solve problems involving area and circumference of a circle. For example, A 15.1 in long wire is bent into the shape of a circle with 2.9 in left over. To the nearest 0.1 in, what is the diameter of the circle?	Procedural	Conceptual Mathematical Modeling \& Data Analysis
7.G.B.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	Procedural	Conceptual Mathematical Modeling \& Data Analysis
Problem Solving		
7.G.B.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three- dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	Application	Mathematical Modeling \& Data

Domain: 7.SP Statistics and Probability

7.SP.A Supporting Cluster: Use random sampling to draw inferences about a population.

Standard	Rigor	SMP Bundle
7.SP.A.1 Describe how statistics can be used to gain information about a population by examining a sample of the population, recognizing that generalizations about a population from a sample are valid only if the sample is representative of that population. Explain that random sampling tends to produce representative samples and support valid inferences.	Conceptual	Mathematical Modeling \& Data Analysis
7.SP.A.2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data and observe the variation in predictions across multiple surveys.	Application	Modeling \& Data Analysis

7.SP.B Additional Cluster: Draw informal comparative inferences about two populations.

Standard	Rigor	SMP Bundle
7.SP.B.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.	Application	
Conceptual Modeling \& Data Analysis		

Standard	Rigor	SMP Bundle
7.SP.B.4 Use measures of center (i.e. mode, median, mean) and measures of variability (i.e. range, interquartile range, mean absolute deviation) for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth- grade science book.	Application	Conceptual Mothematical Analysis \& Data

7.SP.C Supporting Cluster: Investigate and model chance processes.

Standard	Rigor	SMP Bundle
7.SP.C.5 Describe the probability of a chance event as a number between 0 and 1 that expresses the likelihood of the event occurring. (i.e. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.)	Conceptual	Mathematical Modeling \& Data Analysis
7.SP.C.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency. Given the probability of a chance event, predict the approximate relative frequency that will be observed, and collect data to assess the agreement between the probability and the observed frequency. For example, collect data to approximate the probability that a tossed paper cup will land open-end down. Your friend calculated that the probability of "rolling double sixes" with a pair of number cubes is 16; collect data to see how well this probability agrees with the observation frequency.	Application	Conceptual Analysis
Mathematical		

Standard	Rigor	SMP Bundle
7.SP.C.7 Calculate probabilities of simple events under an assumption of equal probability for all outcomes. For example, Suppose that one student in seventh grade will be chosen to speak at a school assembly. On the assumption that every student is equally likely to be chosen, calculate the probability that the youngest seventh grader will be chosen and the probability that a member of Homeroom 701 will be chosen. Calculate the probability of a spinner landing on a certain color, assuming that all of the colors are equally likely outcomes.	Application	Conceptual Mathematical Analysis \& Data
7.SP.C.8 Calculate probabilities of compound events using organized lists, tables, tree diagrams, and simulation. For example, Calculate the probability of "rolling double sixes."	Procedural	Mathematical Modeling \& Data Analysis
Use simulation to approximate the answer to the question: If 40\% of blood donors have type A blood, what is the probability that it will take at least 4 blood donors to find one with type A blood?	Application	

Eighth Grade

In grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.
(1) In grade 8, students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. They recognize equations for proportional relationships ($\mathrm{y} / \mathrm{x}=\mathrm{m}$ or $\mathrm{y}=\mathrm{mx}$) as special linear equations, understanding that the constant of proportionality (m) is the slope, and the graph of $y=m x$ is a straight line through the origin. They understand that the slope (m) of the graph of a linear function is a constant rate of change, so that if the input or x-coordinate changes by an amount A, the output or y-coordinate changes by the amount $m \times A$. Students also use a linear equation to model the association between two quantities in bivariate data (such as arm span vs. height for students in a classroom). At this grade fitting the model and assessing its fit to the data are done informally. Interpreting the model in the context of the data requires students to express a relationship between the two quantities in question and to interpret components of the relationship (such as slope and y intercept) in terms of the situation.
(2) Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding that when they use the properties of equality and the concept of logical equivalence, they maintain the solutions of the original equation. Students solve systems of two linear equations in two variables and relate the systems to pairs of lines in the plane; these intersect, are parallel or are the same line. Students use linear equations, systems of linear equations, linear functions, and their understanding of slope of a line to analyze situations and solve problems. These concepts and skills become more refined and efficient in Algebra 1 as they learn more strategies to use with equations and systems that require manipulation.
(3) Students grasp the concept of function as a rule that assigns to each input exactly one output. They understand that functions describe situations where one quantity determines another. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations. Students extend their understanding of functions in Algebra 1 when they begin using function notation and develop an understanding of domain and range for linear and nonlinear functions.
(4) Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and dilations and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines give rise to similar triangles because of the angles created when a transversal line cuts parallel lines. Students understand the statement of the Pythagorean Theorem and its converse and can explain why the Pythagorean Theorem holds, for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons. Students complete their work on volume by solving problems involving cones, cylinders, and spheres.

Grade 8 Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

The Number System (NS)

- Work with numbers that are not rational, and approximate them by rational numbers.

Expressions and Equations (EE)

- Work with radicals and integer exponents.
- Apply the connections between proportional relationships, lines, and linear equations.
- Analyze and solve linear equations and pairs of simultaneous linear equations.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Functions (F)

- Define, evaluate, and compare functions.
- Use functions to model relationships between quantities.

Geometry (G))

- Demonstrate congruence and similarity using physical models, patty paper or geometry software.
- Explain and apply the Pythagorean Theorem.
- Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Statistics and Probability (SP)

- Investigate patterns of association in bivariate data.

Domain: 8.NS The Number System

8.NS.A Supporting Cluster: Work with numbers that are not rational, and approximate them by rational numbers.

Standard	Rigor	SMP Bundle
8.NS.A.1 Classify and explain numbers as rational or irrational. For rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	Conceptual	Communicating Reasoning
8.NS.A.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions, for example, estimate the value of $\pi 2$. By truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.	Conceptual	Communicating Reasoning

Domain: 8.EE Expressions and Equations

8.EE.A Major Cluster: Work with radicals and integer exponents.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 8.EE.A.1 Apply the properties of integer exponents to } \\ \text { generate equivalent numerical expressions. For } \\ \text { example, } 3^{2} \times 3^{-5}=3^{-3}=\frac{1}{3^{-3}}=\frac{1}{27}\end{array}$	Procedural	Problem Solving
$\begin{array}{l}\text { 8.EE.A.2 Use square root and cube root symbols to } \\ \text { represent solutions to equations of the form } x^{2}=p \text { and } \\ x^{3}=p, \text { where } p \text { is a positive rational number. Evaluate } \\ \text { square roots of small perfect squares and cube roots of } \\ \text { small perfect cubes. Use the bases } 1-5 \text { and } 10 \text { for } \\ \text { cubes. }\end{array}$	Conceptual	Procedural

Reasoning\end{array}\right]\)| |
| :--- |

Standard	Rigor	SMP Bundle
8.EE.A. 3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate quantities much greater than 1 or much less than 1. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.	Conceptual Application	Mathematical Modeling \& Data Analysis
8.EE.A. 4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of convenient size for quantities For example, use millimeters per year for seafloor spreading. Interpret scientific notation that has been generated by technology.	Conceptual Procedural	Mathematical Modeling \& Data Analysis

8.EE.B Major Cluster: Apply the connections between proportional relationships, lines, and linear equations.

Standard	Rigor	SMP Bundle
8.EE.B.5 Relate the unit rate in a proportional relationship to the slope of the graph of the relationship. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance- time equation to determine which of two moving objects has greater speed.	Conceptual	Communicating Reasoning
8.EE.B.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive from this principle the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b. Given a point and a slope, write an equation for the line passing through the given point with the given slope; given two distinct points, write an equation for the line passing through the two points.	Ponceptual	Procedural

Updated 1/4/24

Standard	Rigor	SMP Bundle
8.EE.C.7 Solve linear equations in one variable.	Conceptual	Problem Solving
a.Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x =a, a = a, or a $=b$ results (where a and b are different numbers).	Application	Procedural
b.Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Mathematical Rodeling \& Data	
Analysis		

Domain: 8.F Functions

8.F.A Major Cluster: Define, evaluate, and compare functions.

Standard	Rigor	SMP Bundle
8.F.A.1 Describe a function as a rule that assigns to each input exactly one output and the graph of a function is the set of ordered pairs consisting of an input and the corresponding output. Function notation is not required in grade 8.	Conceptual	Problem Solving
8.F.A.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	Conceptual	Problem Solving
8.F.A.3 Interpret the equation $y=m x+b$ as defining a function that assigns to each input value x the output value $m x+b ;$ this is a linear function whose graph is a straight line. Give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and (3,9), which are not on a straight line.	Conceptual	Problem Solving

8.F.B Major Cluster: Use functions to model relationships between quantities.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { 8.F.B.4 Construct a function to model a linear } \\ \text { relationship between two quantities. Determine the rate } \\ \text { of change and initial value of the function from a } \\ \text { description of a relationship or from two }(x, y) \text { values, } \\ \text { including reading these from a table or from a graph. } \\ \text { Interpret the rate of change and initial value of a linear } \\ \text { function in terms of the situation it models, and in terms } \\ \text { of its graph or a table of values. }\end{array}$	Conceptual	Application

Mathematical

Modeling \& Data

Analysis\end{array}\right]\)

Standard	Rigor	SMP Bundle		
8.F.B.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph For example, where the function is increasing or decreasing, linear or nonlinear. Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	Conceptual	Application		Problem Solving
:---				
Mathematical Modeling \& Data Analysis				

Domain: 8.G Geometry

8.G.A Major Cluster: Demonstrate congruence and similarity using physical models, patty paper or geometry software.

Standard	Rigor	SMP Bundle
8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.	Conceptual	Problem Solving
Communicating		
Reasoning		

Updated 1/4/24

Standard	Rigor	SMP Bundle
8.G.A.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	Procedural	Problem Solving

8.G.B Major Cluster: Explain and apply the Pythagorean Theorem.

$\left.$| Standard | Rigor | SMP Bundle |
| :--- | :--- | :--- |
| 8.G.B.6 Explain a proof of the Pythagorean Theorem
 and a proof of its converse. | Conceptual | Problem Solving
 Communicating
 Reasoning
 Mathematical
 Modeling \& Data
 Analysis |
| 8.G.B.7 Apply the Pythagorean Theorem to determine
 unknown side lengths in right triangles in real-world
 and mathematical problems in two- and three-
 dimensions. | Procedural | Application | | Problem Solving |
| :--- |
| Mathematical |
| Modeling \& Data |
| Analysis | \right\rvert\, | Aproblem Solving |
| :--- |

8.G.C Additional Cluster: Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Standard	Rigor	SMP Bundle
8.G.C.9 Apply the formulas for the volume of cones, cylinders, and spheres to solve real-world and mathematical problems.	Conceptual	Problem Solving
Procedural	Mathematical Modeling \& Data Analysis	

Domain: 8.SP Statistics and Probability

8.SP.A Supporting Cluster: Investigate patterns of association in bivariate data.

Standard	Rigor	SMP Bundle
8.SP.A.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Procedural	Conceptual Modeling \& Data Analysis
8.SP.A.2 For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Conceptual	Mathematical Modeling \& Data Analysis
8.SP.A.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 $\frac{c m}{h r}$ has meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	Application	Conceptual Analysis
Mathematical		

Updated 1/4/24

Standard	Rigor	SMP Bundle
8.SP.A.4 Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	Conceptual	Mathematical Modeling \& Data Analysis

Standards of Mathematical Practice: High School

SMP 1: Make sense of problems and persevere in solving them.

Mathematically proficient high school students analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. While following the solution plan they continually ask themselves, "Does this make sense?" They monitor and evaluate their progress and change course if necessary. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. High school students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph and interpret representations of data, and search for regularity or trends. Mathematically proficient students gain deeper insight into problems by using a different approach, understanding the approaches of others to solving complex problems and identifying correspondences between different approaches.

SMP 2: Reason abstractly and quantitatively.

Mathematically proficient high school students make sense of the quantities and their relationships in problem situations. Students bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize - to abstract a given situation and represent it symbolically, and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents - and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the reference for the symbols involved. Students can write explanatory texts that convey their mathematical analyses and thinking, using relevant and sufficient facts, concrete details, quotations, and coherent discussion of ideas. Students can evaluate multiple sources of information presented in diverse formats (and media) to address a question or solve a problem. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meanings of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

SMP 3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient high school students understand and use stated assumptions, definitions, and previously established results in constructing verbal and written arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples and specific textual evidence to form their arguments. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and - if there is a flaw in an argument -explain what it is and why. They can construct formal arguments relevant to specific contexts and tasks. High school students learn to determine domains to which an argument applies. Students listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the
arguments. Students engage in collaborative discussions, respond to diverse perspectives and approaches, and qualify their own values in light of evidence presented.

SMP 4: Model with mathematics.

Mathematically proficient high school students can apply the mathematics they know to solve problems rising in everyday life, society, and the workplace. By high school, a student might use geometry to solve a design problem or build a function to describe how one quantity depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flow charts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. They can carry out all phases of the modeling cycle. Mathematically proficient high school students also retain the widely applicable techniques they first learned in middle school, such as proportional relationships, rates, and percentages, and apply these techniques as needed to real world tasks of a complexity appropriate to high school.

SMP 5: Use appropriate tools strategically.

Mathematically proficient high school students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for high school to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator; they also know how to sketch graphs of common functions, choosing the approach over a graphing calculator when a sketch will suffice (SMP 6). They detect possible errors by strategically using estimation and other mathematical knowledge, for example anticipating the general appearance of a graph of a function by appreciating the structure of its defining expression (SMP 7). They are able to use software or websites to quickly generate data displays that would otherwise be time-consuming to construct by hand (such as histograms or box plots). Students use technological tools to explore and deepen their understanding of mathematical concepts and analyze realistic data sets. When making mathematical models, students know that technology can enable them to visualize results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems.

SMP 6: Attend to precision.

Mathematically proficient high school students communicate precisely to others both verbally and in writing, adapting their communication to specific contexts, audiences, and purposes. They increasingly use precise language, not only as a mechanism for effective communication, but also as a tool for understanding and solving problems. Describing their ideas precisely helps students understand the ideas in new ways. They use clear definitions in discussions with others and in their own reasoning. They state the meaning of the symbols that they choose. They are careful about specifying units of measure, labeling axes, defining terms and variables,
and calculating accurately and efficiently with a degree of precision appropriate for the problem context. They present logical claims and counterclaims fairly and thoroughly in a way that anticipates the audiences' knowledge, concerns, and possible biases. High school students draw specific evidence from informational sources to support analysis, reflection, and research. They critically evaluate the claims, evidence and reasoning of others and attend to important distinctions with their own claims or inconsistencies in competing claims. Students evaluate the conjectures and claims, data, analysis, and conclusions in text that include quantitative elements, comparing those with information found in other sources. Diligence and attention to detail are mathematical virtues: mathematically proficient students care that an answer is right; they minimize errors by keeping a long calculation organized; they check their work; they solve the problem another way; they take responsibility for careless mistakes and correct them.

SMP 7: Look for and make use of structure.

Mathematically proficient high school students look closely to discern a pattern or structure. In the expression $x^{2}+9 x+14$, high school students can see the 14 as $2 x 7$ and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square, and use that to realize that its value cannot be more than 5 for any real numbers x and y. Students make use of structure for a purpose, for example by applying the conclusion $5-3(x-y)^{2} \leq 5$ in the context of an applied optimization problem.

SMP 8: Look for and express regularity in repeated reasoning.

Mathematically proficient high school students notice if calculations are repeated, and look both for general methods and for shortcuts. Noticing the regularity in the way terms sum to zero when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead students to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details and continually evaluating the reasonableness of their intermediate results.

Mathematics Standards for High School (Algebra I, Geometry, Algebra II)

The high school standards specify the mathematics that all students should study in order to be college and career ready. The required standards are included in the course of Algebra 1, Geometry, and Algebra 2.

Making mathematical models is a SMP and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star).

The high school standards are listed in conceptual categories:

- Number and Quantity
- Algebra
- Functions
- Modeling \star
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student's work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Mathematics | High School-Modeling

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

Modeling links classroom mathematics and statistics to everyday life, work, and decisionmaking. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations-modeling a delivery route, a production schedule, or a comparison of loan amortizations-need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is a creative process. Like every such process, this depends on acquired expertise as well as creativity.

Some examples of such situations might include:

- Estimating how much water and food is needed for emergency relief in a devastated city of three million people, and how it might be distributed.
- Planning a table tennis tournament for seven players at a club with four tables, where each player plays against each other.
- Designing the layout of the stalls in a school fair to raise as much money as possible.
- Analyzing stopping distance for a car.
- Modeling savings account balance, bacterial colony growth, or investment growth.
- Engaging in critical path analysis, for example, applied to turnaround of an aircraft at an airport.
- Analyzing risk in situations such as extreme sports, pandemics, and terrorism.
- Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations.

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures

themselves, for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar descriptive model- for example, graphs of global temperature and atmospheric CO^{2} over time.

Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such problems.

Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena.

The high school portion of the Standards for Mathematical Content specifies the mathematics all students should study for college and career readiness. These standards do not mandate the sequence of high school courses. However, the organization of high school courses is a critical component to implementation of the standards. To that end, a sample high school pathway of Algebra - Geometry - Algebra 2 course is included. Districts have the local responsibility to ensure all required standards are included within their required mathematics courses.

The table below shows an overview of the courses the standards may fall into. All the high school mathematics standards must fall within a three year sequence that all students take. Major clusters are bolded.

Conceptual Category	Domain	Algebra 1	Geometry	Algebra 2
Number and Quantity	The Real Number System	N-RN.B. 3		N-RN.A. 1 N-RN.A. 2
	Quantities *	N-Q.A. 1 N-Q.A. 2 N-Q.A. 3		$\begin{aligned} & \text { N-Q.A. } 1 \\ & \text { N-Q.A. } 2 \\ & \text { N-Q.A. } 3 \end{aligned}$
	The Complex Number System			$\begin{aligned} & \hline \mathrm{N}-\mathrm{CN} . \mathrm{A} .1 \\ & \mathrm{~N}-\mathrm{CN} . \mathrm{A} .2 \\ & \mathrm{~N}-\mathrm{CN} . \mathrm{C} .7 \end{aligned}$
Algebra	Seeing Structure in Expressions	$\begin{aligned} & \text { A-SSE.A. } 1 \\ & \text { A-SSE.A. } 2 \\ & \text { A-SSE.B. } 3 \end{aligned}$		A-SSE.A. 1 A-SSE.A. 2 A-SSE.B. 3 A-SSE.B. 4
	Arithmetic with Polynomials and Rational Expressions			A-APR.A. 1 A-APR.B. 2 A-APR.B. 3 A-APR.D. 6
	Creating Equations *	A-CED.A. 1 A-CED.A. 2 A-CED.A. 3 A-CED.A. 4		A-CED.A. 1 A-CED.A. 2 A-CED.A. 3 A-CED.A. 4

Conceptual Category	Domain	Algebra 1	Geometry	Algebra 2
	Reasoning with Equations and Inequalities	A-REI.A. 1 A-REI.A. 2 A-REI.B. 3 A-REI.B. 4 A-REI.C. 5 A-REI.C. 6 A-REI.C. 7 A-REI.D. 10 A-REI.D. 11 A-REI.D. 12		A-REI.A. 1 A-REI.A. 2 A-REI.B. 4 A-REI.C. 7 A-REI.D. 10 A-REI.D. 11 A-REI.D. 12
Functions	Interpreting Functions	F-IF.A. 1 F-IF.A. 2 F-IF.A. 3 F-IF.B. 4 F-IF.B. 5 F-IF.B. 6 F-IF.C. 7 F-IF.C. 8		$\begin{array}{\|l\|} \hline \text { F-IF.B. } 4 \\ \text { F-IF.B. } 5 \\ \text { F-IF.B. } 6 \\ \text { F-IF.C. } 7 \\ \text { F-IF.C. } 8 \end{array}$
	Building Functions	$\begin{aligned} & \text { F-BF.A. } 1 \\ & \text { F-BF.A. } 2 \\ & \text { F-BF.B. } 3 \end{aligned}$		$\begin{aligned} & \text { F-BF.A. } 1 \\ & \text { F-BF.A. } 2 \\ & \text { F-BF.B. } 3 \\ & \text { F-BF.B. } 4 \end{aligned}$
	Linear, Quadratic, and Exponential Models	$\begin{aligned} & \text { F-LE.A. } 1 \\ & \text { F-LE.A. } 2 \\ & \text { F-LE.A. } 3 \\ & \text { F-LE.B. } 5 \end{aligned}$		$\begin{aligned} & \text { F-LE.A. } 2 \\ & \text { F-LE.A. } 4 \\ & \text { F-LE.B. } 5 \end{aligned}$

Conceptual Category	Domain	Algebra 1	Geometry	Algebra 2
	Trigonometric Functions			F-TF.A. 1 F-TF.A. 2 F-TF.A. 3 F-TF.A. 5
Geometry	Congruence		G-CO.A. 1 G-CO.A. 2 G-CO.A. 3 G-CO.A. 4 G-CO.A. 5 G-CO.B. 6 G-CO.B. 7 G-CO.B. 8 G-CO.C. 9 G-CO.C. 10 G-CO.C. 11 G-CO.D. 12 G-CO.D. 13	
	Similarity, Right Triangles, and Trigonometry		G-SRT.A. 1 G-SRT.A. 2 G-SRT.A. 3 G-SRT.B. 4 G-SRT.B. 5 G-SRT.C. 6 G-SRT.C. 7 G-SRT.C. 8	

Conceptual Category	Domain	Algebra 1	Geometry	Algebra 2
	Circles		G-C.A. 1 G-C.A. 2 G-C.A. 3 G-C.B. 5	
	Expressing Geometric Properties with Equations		G-GPE.A. 1 G-GPE.B. 4 G-GPE.B. 5 G-GPE.B. 7	G-GPE.A. 2 G-GPE.B. 6
	Geometric Measurement and Dimension		G-GMD.A. 1 G-GMD.A. 2 G-GMD.A. 3 G-GMD.B. 4	
	Modeling with Geometry		$\begin{aligned} & \text { G-MG.A. } 1 \\ & \text { G-MG.A. } 2 \\ & \text { G-MG.A. } 3 \end{aligned}$	
Statistics and Probability	Interpreting Categorical and Quantitative Data *	$\begin{aligned} & \hline \text { S-ID.A. } 1 \\ & \text { S-ID.A. } 2 \\ & \text { S-ID.A. } 3 \\ & \text { S-ID.B. } 5 \\ & \text { S-ID.B. } 6 \\ & \text { S-ID.C. } 7 \\ & \text { S-ID.C. } 8 \\ & \text { S-ID.C. } 9 \end{aligned}$		S-ID.A. 4

Conceptual Category	Domain	Algebra 1	Geometry	Algebra 2
	Making Inferences and Justifying Conclusions			$\begin{aligned} & \text { S-IC.A. } 1 \\ & \text { S-IC.A. } 2 \\ & \text { S-IC.B. } 3 \\ & \text { S-IC.B. } 4 \\ & \text { S-IC.B. } 5 \\ & \text { S-IC.B. } 6 \end{aligned}$
	Conditional Probability and the Rules of Probability		$\begin{aligned} & \hline \text { S-CP.A. } 1 \\ & \text { S-CP.A. } 2 \\ & \text { S-CP.A. } 3 \\ & \text { S-CP.A. } 4 \\ & \text { S-CP.A. } 5 \\ & \text { S-CP.B. } 6 \\ & \text { S-CP.B. } 7 \end{aligned}$	
	Using Probability to Make Decisions		S-MD.B. 7	

Algebra I

Students in Algebra 1 formalize and extend the mathematics they learned in middle grades. They also apply mathematics to real-world problems, using newly learned skills to solve briefer applications and using skills familiar from middle grades to complete more substantial modeling tasks.

In the dynamic landscape of education and the ever-evolving demands of the professional world, the acquisition of essential skills has become paramount for students striving towards college and career readiness. Among these foundational skills, the mastery of Algebra 1 stands out as an indispensable cornerstone. Algebra 1 not only serves as a gateway to advanced mathematical concepts but also plays a pivotal role in shaping the cognitive abilities and problem-solving skills that are fundamental for success in higher education and diverse career paths.

Algebra 1 acts as a catalyst for intellectual growth, fostering critical thinking and analytical reasoning. Through the exploration of algebraic principles, students develop a deep understanding of mathematical relationships, enabling them to make connections between abstract concepts and real-world applications. This analytical mindset cultivated in Algebra 1 not only empowers students to excel in subsequent math courses but also equips them with a versatile set of problem-solving tools applicable across various academic disciplines and professional endeavors.

As districts plan high school course sequences it is important to ensure pathways exist that allow early access to Algebra I for all students creating access to higher level math courses during high school, and may consider where an accelerated path that offers Algebra I in 8th grade might be appropriate for students.

1 The standards for Geometry include some algebraic problems that reinforce geometry and strengthen continuity in the pathways.

2 For example, Mathematics in Trade/Careers, Financial Algebra, etc.

3 For example, Data Science, Advanced Mathematical Modeling, Discrete Mathematics, etc.

4 Students on the All Careers can decide to change Pathways by taking Calculus during the senior year (dashed arrow); this requires an appropriate summer or semester bridge course.

5 Students on the pathway to Life Science, Social Science, Health-care, Business and Technical Careers can decide to change Pathways by taking Calculus during the senior year (dashed arrow); this requires an appropriate summer or semester bridge course.

6 Students on the Engineering and Physical Science Careers can decide to change Pathways by taking statistics and or mathematics applications during their senior year instead of taking calculus.

By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. In Algebra 1, students analyze and explain the process of solving an equation and justify the process used in solving a system of equations. Students gain fluency in writing, interpreting, and translating among various forms of linear equations and inequalities and use the equations and inequalities to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. Students become fluent with algebraic manipulation, including rearranging and collecting terms and factoring.

Both grade 8 and Algebra 1 students study different ways to solve systems of linear equations. In eighth grade, students are reminded of the significance of what a point represents on a line and explore what a point of intersection represents using graphing and substitution. In Algebra 1 , students explore the elimination strategy and more systems that may require manipulation to equations to solve algebraically.

In earlier grades, students defined, evaluated, and compared functions, and used them to model relationships between quantities. In Algebra 1, students learn function notation and the concepts of domain and range. They interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and understand the limitations of various representations.

Building on and extending their understanding of integer exponents, students in Algebra 1 consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. Students explore systems of equations and inequalities, and find and interpret their solutions. They interpret arithmetic sequences as linear functions and interpret geometric sequences as exponential functions.

Students extend the laws of exponents to rational exponents, connecting rational exponents to square and cube roots, and applying this new understanding of numbers. They learn to see structure in quadratic and exponential expressions, and create and solve equations, inequalities, and systems of equations involving quadratic expressions. Students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions, and selecting from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students expand their experience with functions to explore more specialized functions - absolute value, step, and those that are piecewise-defined.

Building upon their prior experiences with data, students explore a more formal means of assessing how a model fits data. They use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of context to make judgments about the appropriateness of linear models. With linear models, students look at residuals to analyze the goodness of fit.

Algebra 1 Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

The Real Number System (N-RN)

- Extend the properties of exponentials to rational exponents.
- Use properties of rational and irrational numbers.

Quantities ($\mathrm{N}-\mathrm{Q}$)

- Reason quantitatively and use units to solve problems.

Seeing Structure in Expressions (A-SSE)

- Interpret the structure of expressions.
- Write expressions and equations in equivalent forms to solve problems.

Creating Equations \star (A-CED)

- Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities (A-REI)

- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Solve systems of equations.
- Represent and solve equations and inequalities graphically.

Interpreting Functions (F-IF)

- Understand the concept of a function and use function notation.
- Interpret functions that arise in applications in terms of the context.
- Analyze functions using different representations.

Building Functions (F-BF)

- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.

Linear, Quadratic and Exponential Models (F-LE)

- Construct and compare linear, quadratic, and exponential models and solve.
- Interpret expressions for functions in terms of the situation they model.

Interpreting Categorical and Quantitative Data \star (S-ID)

- Summarize, represent, and interpret data on a single count or measurement variable.
- Summarize, represent, and interpret data on two categorical and quantitative variables.
- Interpret linear models.

Conceptual Category: Number and Quantity

Domain: N-RN The Real Number System

N-RN.B Additional Cluster: Use properties of rational and irrational numbers.

Standard	Rigor	SMP Bundle
N-RN.B.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Conceptual	Communicating Reasoning

Domain: N-Q Quantities

N-Q.A Supporting Cluster: Reason quantitatively and use units to solve problems.

Standard	Rigor	SMP Bundle
N-Q.A. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Conceptual Application	Problem Solving Mathematical Modeling \& Data Analysis
N-Q.A. 2 Define appropriate quantities for the purpose of descriptive modeling.	Conceptual	Problem Solving Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
N-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Conceptual Application	Problem Solving Mathematical Modeling \& Data Analysis

Conceptual Category: Algebra

Domain: A-SSE Seeing Structure in Expressions and Equations

A-SSE.A Major Cluster: Interpret the structure of expressions.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { A-SSE.A.1 Interpret expressions that represent a quantity } \\ \text { in terms of its context. Interpret parts of an expression, } \\ \text { such as terms, factors, and coefficients. } \star\end{array}$	Conceptual	Problem Solving
$\begin{array}{l}\text { A-SSE.A.2 Use the structure of an expression to identify } \\ \text { ways to rewrite it. For example, see } x^{2}-9 \text { as } x^{2}-3^{2} \text {, thus } \\ \text { recognizing it as a difference of squares that can be } \\ \text { factored as }(x-3)(x+3) .\end{array}$	Conceptual	Procedural

Communicating

Reasoning\end{array}\right]\)

A-SSE.A Supporting Cluster: Write expressions and equations in equivalent forms to solve problems.

Standard	Rigor	SMP Bundle
A-SSE.B.3 Choose and produce an equivalent form of an expression or equation to reveal and explain properties of the quantity represented by the expression. \star	Conceptual	Problem Solving
a. Factor a quadratic expression to reveal the zeros of		
the function it defines.		
b.Complete the square in a quadratic equation to reveal the maximum or minimum value of the function it defines.	Application	Mathematical Modeling \& Data Analysis
c. Use the properties of exponents to transform		
expressions for exponential functions. For example,		
the expression $3^{\times x}$ can be rewritten as (1+2) to		
reveal the growth rate is 200%.		

Domain: A-CED Creating Equations

A-CED.A Major Cluster: Create equations that describe numbers or relationships.

Standard	Rigor	SMP Bundle
A-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. For example, a cell phone company offers two texting plans. People who use plan A pay 10 cents for each text sent or received. People who use plan B pay 12 dollars per month, and then pay an additional 2 cents for each text sent or received. Write an inequality to represent the fact that it is cheaper for someone to use plan A than plan B. Use x to represent the number of texts they send. Solve the inequality.	Application	Conceptual Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
A-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. For example, a population of mosquitos p is modeled by the equation $p=1,000 \cdot 2 w$ where w is the number of weeks after the population was first measured. Find and plot the mosquito population for $w=0,1,2,3,4$.	Application	Conceptual Mathematical Modeling \& Data Analysis
Where on the graph do you see the 1,000 from the equation for p ? Where on the graph can you see the 2 from the equation?	Problem Solving	
A-CED.A.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	Application	Mathematical Modeling \& Data Analysis
A-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	Procedural	Problem Solving

Domain: A-REI Reasoning with Equations and Inequalities

A-REI.A Major Cluster: Understand solving equations as a process of reasoning and explain the reasoning.

Standard	Rigor	SMP Bundle
A-REI.A.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Conceptual	Communicating Reasoning

Updated 1/4/24

Standard	Rigor	SMP Bundle
A-REI.A.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Conceptual	Problem Solving
Procedural	Communicating Reasoning Mathematical	
Modeling \& Data		
Analysis		

A-REI.B Major Cluster: Solve equations and inequalities in one variable.

Standard	Rigor	SMP Bundle
A-REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Procedural	Problem Solving
A-REI.B.4 Solve quadratic equations in one variable.	Procedural	Mathematical Modeling \& Data Analysis
a. Use the method of completing the square to Solving transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. b.Solve quadratic equations with real solutions using any method.	Mathematical Modeling \& Data Analysis	

A-REI.C Additional Cluster: Solve systems of equations.

Standard	Rigor	SMP Bundle
A-REI.C.5 Explain how the strategy of elimination results in finding solution(s) to a system of equations.	Conceptual	Problem Solving
Procedural	Communicating Reasoning	

Updated 1/4/24

Standard	Rigor	SMP Bundle			
A-REI.C.6 Solve systems of linear equations exactly and approximately (for example, with graphs), focusing on pairs of linear equations in two variables.	Procedural	Problem Solving Communicating Reasoning Mathematical			
Modeling \& Data					
Analysis			$	$	A-REI.C.7 Solve a simple system consisting of a linear
:---					
equation and a quadratic equation in two variables					
algebraically and graphically. For example, find the points					
of intersection between the line $y=-3 x$ and the circle $x^{2}+$					
$y^{2}=3$.					

A-REI.D Major Cluster: Represent and solve equations and inequalities graphically.

Standard	Rigor	SMP Bundle
A-REI.D.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Procedural	Problem Solving
A-REI.D.11 Explain why the solution(s) of a system of equations is/ are the point(s) of intersection(s) on a coordinate plane. Find the solutions approximately, using technology to graph the functions, make tables of values, Reasoning		
fr find successive approximations. Include cases where		
f(x) and/or $\mathrm{g}(\mathrm{x})$ are linear, quadratic, absolute value		
functions. \star	Procedural	Conceptual Communicating Reasoning

Updated 1/4/24

Standard	Rigor	SMP Bundle		
A-REI.D.12 Graph and interpret (with the use of technology) the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Application	Procedural	Problem Solving	
:---				

Conceptual Category: Functions

Domain: F-IF Interpreting Functions

F-IF.A Major Cluster: Understand the concept of a function and use function notation.

Standard	Rigor	SMP Bundle
F-IF.A.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	Conceptual	Problem Solving
F-IF.A.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Procedural	Problem Solving
Reasoning		

F-IF.B Major Cluster: Interpret functions that arise in applications in terms of the context.

Standard	Rigor	SMP Bundle
F-IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximum and minimum; and symmetries. \star	Application	Conceptual Mathematical Modeling \& Data Analysis
F-IF.B.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	Application	Problem Solving
Pommunicating		
F-IF.B. 6 Calculate and interpret the average rate of change of a nonlinear function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star	Procedural	Conceptual Reasoning
Mathematical Modeling \& Data Analysis		

F-IF.C Supporting Cluster: Analyze functions using different representations.

Standard	Rigor	SMP Bundle
F-IF.C.7a Graph linear and quadratic functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases, including intercepts, maxima, and minima. \star	Procedural	Problem Solving

Updated 1/4/24

Standard	Rigor	SMP Bundle
F-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. For example, use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Application	Mathematical Modeling \& Data
Analysis		

Domain: F-BF Building Functions

F-BF.A Supporting Cluster: Build a function that models a relationship between two quantities.

Standard	Rigor	SMP Bundle
F-BF.A. 1 Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context. \star	Conceptual	Mathematical Modeling \& Data Analysis
F-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Interpret arithmetic sequences as linear functions and geometric sequences as exponential functions. \star	Application	Procedural Analysis

F-BF.B Additional Cluster: Build new functions from existing functions.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { F-BF.B.3 Identify the effect on linear and quadratic graphs } \\ \text { of replacing } f(x) \text { by } f(x)+k, k f(x), f(k x) \text {, and } f(x+k) \text { for } \\ \text { specific values of } k \text { (both positive and negative); find the } \\ \text { value of } k \text { given the graphs. Experiment with cases and } \\ \text { illustrate an explanation of the effects on the graph using } \\ \text { technology. }\end{array}$	Conceptual	Application

Reasoning\end{array}\right]\)

Domain: F-LE Linear, Quadratic, and Exponential Models \star

F-LE.A Supporting Cluster: Construct and compare linear, quadratic, and exponential models and solve problems.

Standard	Rigor	SMP Bundle
F-LE.A. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis
F-LE.A. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	Procedural	Mathematical Modeling \& Data Analysis
F-LE.A. 3 Use graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	Procedural	Mathematical Modeling \& Data Analysis

F-LE.B Supporting Cluster: Interpret expressions for functions in terms of the situation they model.

Standard	Rigor	SMP Bundle
F-LE.B.5 Interpret the parameters in a linear or exponential function in terms of a context.	Conceptual	Mathematical Modeling \& Data Analysis

Conceptual Category: Statistics and Probability \star

Domain: S-ID Interpreting Categorical and Quantitative Data \star
S-ID.A Additional Cluster: Summarize, represent, and interpret data on a single count or measurement variable. \star

Standard	Rigor	SMP Bundle
S-ID.A.1 Represent data with plots on the real number line (dot plots, histograms, and box plots). \star	Procedural	Mathematical Modeling \& Data Analysis
S-ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. \star	Conceptual	Mathematical Modeling \& Data Analysis
S-ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). \star	Conceptual	Mathematical Modeling \& Data Analysis

S-ID.B Supporting Cluster: Summarize, represent, and interpret data on two categorical and quantitative variables. \star

Standard	Rigor	SMP Bundle
S-ID.B.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. \star	Conceptual	Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
S-ID.B. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association.	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis

S-ID.C Major Cluster: Interpret linear models.

Standard	Rigor	SMP Bundle
S-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. \star	Conceptual	Problem Solving
S-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit. \star	Conceptual Procedural	Problem Solving
S-ID.C. 9 Distinguish between correlation and causation. \star	Conceptual	Problem Solving

Geometry

Students in Geometry formalize and extend the mathematics they learned in the middle grades. They build on previous learning to explore more complex geometric situations and deepen their explanations of geometric relationships by presenting and hearing formal mathematical arguments. They also solve applied tasks by combining geometric methods with algebra techniques and numerical calculations.

Students have prior experience with drawing triangles based on given measurements and performing rigid motions including translations, reflections, and rotations. They have used these to form notations about what it means for two objects to be congruent. In this course, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for learning formal proof, proving theorems using a variety of formats including deductive and inductive reasoning and proof by contradiction. They apply reasoning to complete geometric constructions and explain why they work. They use geometric relationships to solve problems about figures.

Students extend their previous experience with dilations to gain a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to solve problems in right triangle trigonometry.

Students' experience with three-dimensional objects is extended to include informal explanations of circumference, area, and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

Building on their work with the Pythagorean Theorem in eighth grade to find distances, students use the rectangular coordinate system to verify geometric relationships, including slopes of parallel and perpendicular lines, which relates to work done in Algebra 1. Students continue their study of quadratics by solving applied problems involving geometric measurement leading to quadratic equations, and by connecting the geometric and algebraic definitions of the parabola.

In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations to determine intersections between lines and circles or parabolas and between two circles.

Building on probability concepts that began in the middle grades, students use the language of sets to expand their ability to work with probability for compound events, attending to mutually exclusive events, independent events and conditional probability. They use probability to make informed decisions.

Geometry Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

Congruence (G-CO)

- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Prove geometric theorems.
- Make geometric constructions.

Similarity, Right Triangles, and Trigonometry (GSRT)

- Understand similarity in terms of similarity transformations.
- Prove theorems using similarity.
- Define trigonometric ratios and solve problems involving right triangles.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Circles (G-C)

- Understand and apply theorems about circles.
- Find arc lengths and areas of sectors of circles.

Expressing Geometric Properties with Equations (G-GPE)

- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems algebraically.

Modeling with Geometry (G-MG)

- Apply geometric concepts in modeling situations.

Conditional Probability and the Rules of Probability $\boldsymbol{\star}$ (S-CP)

- Use independence and conditional probability to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Conceptual Category: Geometry

Domain: G-CO Congruence
G-CO.A Supporting Cluster: Experiment with transformations in the plane.

	Standard	Rigor
G-C0.A.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	Conceptual	Communicating Reasoning
G-co.A.2 Represent transformations in the plane using geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (for example, translation versus horizontal stretch).	Conceptual	Communicating Reasoning
G-co.A.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	Conceptual	Communicating Reasoning
G-Co.A.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	Conceptual	Communicating Reasoning
G-Co.A.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, for example, graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	Conceptual	Communicating Reasoning

G-CO.B Major Cluster: Understand congruence in terms of rigid motions.

Standard	Rigor	SMP Bundle
G-CO.B.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Conceptual	Communicating Reasoning
G-CO.B.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	Conceptual	Communicating Reasoning
G-CO.B.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	Conceptual	Communicating Reasoning

G-CO.C Major Cluster: Prove geometric theorems.

Standard	Rigor	SMP Bundle
G-CO.C.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	Conceptual	Communicating Reasoning
G-CO.C.10 For triangles, be able to prove that measures of interior angles sum to 180 ; that base angles of isosceles triangles are congruent; that the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; and that the medians of a triangle meet at a point.	Conceptual	Communicating Reasoning

Standard	Rigor	SMP Bundle
G-co.c.11 For parallelograms, be able to prove the opposite sides are congruent; that opposite angles are congruent: that the diagonals of a parallelogram bisect each other and conversely, rectangles are parallelograms with congruent diagonals.	Conceptual	Communicating Reasoning

G-CO.D Major Cluster: Make geometric constructions.

Standard	Rigor	SMP Bundle
G-CO.D.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	Procedural	Conceptual
Communicating Reasoning		
G-CO.D.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Conceptual	Communicating Reasoning

Domain: G-SRT Similarity, Right Triangles, and Trigonometry

G-SRT.A Major Cluster: Understand similarity in terms of similarity transformations.

Standard	Rigor	SMP Bundle
G-SRT.A.1 Verify experimentally the properties of dilations given by a center and a scale factor:	Conceptual	Communicating Reasoning
a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b.The dilation of a line segment is longer or shorter in the ratio given by the scale factor.		

Standard	Rigor	SMP Bundle
G-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	Conceptual	Communicating Reasoning
G-SRT.A.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	Conceptual	Communicating Reasoning

G-SRT.B Major Cluster: Prove and apply theorems involving similarity.

Standard	Rigor	SMP Bundle
G-SRT.B.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	Conceptual	Communicating Reasoning
G-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	Conceptual	Communicating Reasoning

G-SRT.C Major Cluster: Define trigonometric ratios and solve problems involving right triangles.

Standard	Rigor	SMP Bundle
G-SRT.C.6 Develop the definitions of trigonometric ratios for acute angles using similarity and side ratios in right triangles.	Conceptual Procedural	Communicating Reasoning

Updated 1/4/24

Standard	Rigor	SMP Bundle
G-SRT.C.7 Explain and use the relationship between the sine and cosine of complementary angles.	Conceptual Procedural	Communicating Reasoning
G-SRT.C.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. \star	Conceptual Procedural	Communicating Reasoning

Domain: G-C Circles

G-C.A Additional Cluster: Understand and apply theorems about circles.

Standard	Rigor	SMP Bundle
G-C.A.1 Prove that all circles are similar.	Conceptual	Communicating Reasoning
G-C.A.2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	Conceptual	Communicating Reasoning
G-C.A.3 Construct the inscribed and circumscribed circles of a triangle with technology.	Conceptual	Communicating Reasoning

G-C.B Additional Cluster: Find arc lengths and areas of sectors of circles.

Standard	Rigor	SMP Bundle
G-C.B. 5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	Conceptual	Communicating Reasoning

Domain: G-GPE Expressing Geometric Properties with Equations

G-GPE.A Additional Cluster: Translate between the geometric description and the equation for a conic section.

Standard	Rigor	SMP Bundle
G-GPE.A.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	Conceptual	Communicating Reasoning
G-GPE.A.2 Derive the equation of a parabola given a focus and directrix.	Procedural	Problem Solving

G-GPE.B Major Cluster: Use coordinates to prove simple geometric theorems algebraically.

Standard	Rigor	SMP Bundle
G-GPE.B.4 Use coordinate geometry to prove simple geometric theorems. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle.	Conceptual	Communicating Reasoning

Updated 1/4/24

Standard	Rigor	SMP Bundle
G-GPE.B. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. For example, find the equation of a line parallel or perpendicular to a given line that passes through a given point.	Conceptual	Communicating Reasoning
G-GPE.B.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	Procedural	Communicating Reasoning
G-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles. For example, use the distance formula to calculate the distance between the two points. \star	Conceptual	Communicating Reasoning

Domain: G-GMD Geometric Measurement and Dimension

G-GMD.A Additional Cluster: Explain volume formulas and use them to solve problems.

Standard	Rigor	SMP Bundle		
G-GMD.A.1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	Conceptual	Communicating Reasoning		
G-GMD.A.2 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. \star	Procedural	Application		Problem Solving
:---				
Mathematical Modeling \& Data Analysis				
G-GMD.A. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. \star				
Procedural				
Application				

G-GMD.B Additional Cluster: Visualize relationships between two-dimensional and threedimensional objects.

Standard	Rigor	SMP Bundle
G-GMD.B.4 Identify the shapes of two-dimensional cross- sections of three-dimensional objects, and identify three- dimensional objects generated by rotations of two- dimensional objects.	Conceptual	Communicating Reasoning

Domain: G-MG Modeling with Geometry

G-MG.A Major Cluster: Apply geometric concepts with modeling situations.

Standard	Rigor	SMP Bundle			
G-MG.A.1 Use geometric shapes, their measures, and their properties to describe and explain objects. For example, modeling a tree trunk or a human torso as a cylinder. \star	Conceptual	Procedural			
Problem Solving					
Communicating					
Reasoning					
Mathematical					
Modeling \& Data					
Analysis			$	$	Application
:---					

Conceptual Category: S-CP Statistics and Probability

Domain: Conditional Probability and the Rules of Probability \star
S-CP.A Additional Cluster: Use independence and conditional probability to interpret data. \star

Standard	Rigor	SMP Bundle
S-CP.A.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). \star	Conceptual	Procedural

Updated 1/4/24

Standard	Rigor	SMP Bundle
S-CP.A.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. \star	Procedural	Application

S-CP.B Additional Cluster: Use the rules of probability to compute probabilities of compound events in a uniform probability model. \star

Standard	Rigor	SMP Bundle
S-CP.B.6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model. \star	Procedural	Problem Solving
S-CP.B. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+$ $P(B)-P(A$ and $B)$, and interpret the answer in terms of the model. \star	Procedural	Problem Solving

Domain: S-MD Using Probability to Make Decisions \star

S-MD.B Supporting Cluster: Use probability to evaluate outcomes of decisions. \star

Standard	Rigor	SMP Bundle		
S-MD.B.7 Analyze decisions and strategies using probability concepts. For example, product testing, medical testing, pulling a hockey goalie at the end of a game. \star	Conceptual	Procedural		Problem Solving
:---				
Communicating				
Reasoning				
Application	\quad	Mathematical		
:---				
Modeling \& Data				
Analysis				

Algebra 2

Students in Algebra 2 formalize and extend the mathematics they learned in Algebra 1. They apply mathematics to real-world problems, using newly learned skills to solve briefer applications and using skills familiar from previous grades and courses to complete more substantial modeling tasks.

Building on their work with linear, quadratic, and exponential functions, students in Algebra 2 extend their repertoire to include polynomial, rational, and logarithmic functions. Students work closely with the expressions that define functions, are fluent with algebraic manipulations of expressions, and continue to expand and hone their abilities to model situations and to solve equations.

A theme of students' work with expressions in Algebra 2 is that the arithmetic of polynomial expressions is governed by the same rules as the arithmetic of integers. Students can draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Connections are available between multiplication of polynomials and multiplication of multi-digit integers, and between division of polynomials and long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations.

Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgements about the domain over which a model is a good fit. The description of modeling as the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions, is at the heart of this course. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

Students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data - including sample surveys, experiments, and simulations - and the role that randomness and careful design play in the conclusions that can be drawn.

Algebra 2 Overview

Major clusters are bolded; these represent the skills and concepts that should represent $65-85 \%$ of instructional time.

The Real Number System (N-RN)

- Extend the properties of exponents to rational exponents.

Quantities $\star(\mathrm{N}-\mathrm{Q})$

- Reason quantitatively and use units to solve problems.

The Complex Number System (N-CN)

- Perform arithmetic operations with complex numbers.
- Use complex numbers in polynomial identities and equations.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Seeing Structure in Expressions (A-SSE)

- Interpret the structure of expressions.
- Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions (A-APR)

- Perform arithmetic operations on polynomials.
- Understand the relationship between zeros and factors of polynomials.
- Rewrite rational expressions.

Reasoning with Equations and Inequalities (A-REI)

- Create equations that describe numbers or relationships.
- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Solve systems of equations.
- Represent and solve equations and inequalities graphically.

Interpreting Functions (F-IF)

- Interpret functions that arise in applications in terms of the context.
- Analyze functions using different representations.

Building Functions (F-BF)

- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.

Linear, Quadratic, and Exponential Models (F-LE)

- Construct and compare linear, quadratic, and exponential models and solve problems.
- Interpret expressions for functions in terms of the situation they model.

Trigonometric Functions (F-TF)

- Extend the domain of trigonometric functions using the unit circle.
- Model periodic phenomena with trigonometric functions.

Interpreting Categorical and Quantitative Data $\boldsymbol{\star}$ (S-ID)

- Summarize, represent, and interpret data on a single count or measurement variable.

Making Inferences and Justifying Conclusions $\boldsymbol{*}$ (S-IC)

- Understand and evaluate random processes underlying statistical experiments.
- Make inferences and justify conclusions from sample surveys, experiments and observational studies.

Conceptual Category: Number and Quantity

Domain: N-RN The Real Number System
N-RN.A Major Cluster: Extend the properties of exponents to rational exponents.

Standard	Rigor	SMP Bundle
N-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal five.	Conceptual	Communicating Reasoning
N-RN.A.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Conceptual	Communicating Reasoning

Domain: N-Q Quantities

N-Q.A Supporting Cluster: Reason quantitatively and use units to solve problems.

Standard	Rigor	SMP Bundle		
N-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Conceptual	Application		Problem Solving
:---				
Mathematical Modeling \& Data Analysis				
N-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.				
Conceptual				
Problem Solving				
Mathematical				
Modeling \& Data				
Analysis				

Updated 1/4/24

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { N-Q.A.3 Choose a level of accuracy appropriate to } \\ \text { limitations on measurement when reporting quantities. }\end{array}$	Conceptual	Application

Mathematical

Modeling \& Data

Analysis\end{array}\right]\)

Domain: N-CN The Complex Number System

N-CN.A Additional Cluster: Perform arithmetic operations with complex numbers.

Standard	Rigor	SMP Bundle
N-CN.A.1 Know there is a complex number i such that $i^{2}=$ -1, and every complex number has the form $a+b i$ with a and b real.	Conceptual	Communicating Reasoning
N-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.	Procedural	Problem Solving

N-CN.B Additional Cluster: Use complex numbers in polynomial identities and equations.

Standard	Rigor	SMP Bundle
N-CN.C.7 Solve quadratic equations with real coefficients that have complex solutions.	Procedural	Problem Solving

Conceptual Category: Algebra

Domain: A-SSE Seeing Structure in Expressions and Equations

A-SSE.A Major Cluster: Interpret the structure of expressions.

Standard	Rigor	SMP Bundle
A-SSE.A. 1 Interpret expressions that represent a quantity in terms of its context. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.	Procedural Application	Problem Solving
A-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.	Conceptual Procedural	Problem Solving Communicating Reasoning

A-SSE.A Major Cluster: Write expressions and equations in equivalent forms to solve problems.

Standard	Rigor	SMP Bundle
A-SSE.B.3 Choose and produce an equivalent form of an expression or equation to reveal and explain properties of the quantity represented by the expression.	Conceptual	Problem Solving
a. Factor a quadratic expression to reveal the zeros of		
the function it defines.		
b.Complete the square in a quadratic equation to reveal the maximum or minimum value of the function it defines.	Mathematical Modeling \& Data Analysis	
Use the properties of exponents to transform expressions for exponential functions. For example, the expression 3^{x} can be rewritten as (1+2) to reveal the growth rate is $200 \% . \star$		
Note: a, b and c are in Algebra 1.		

Standard	Rigor	SMP Bundle
A-SSE.B.4 Choose and produce an equivalent form of an expression or equation to reveal and explain properties of the quantity represented by the expression. \star	Procedural	Problem Solving
Application	Mathematical Modeling \& Data Analysis	

Domain: A-APR Arithmetic with Polynomials and Rational Expressions

A-APR.A Major Cluster: Perform arithmetic operations on polynomials.

Standard	Rigor	SMP Bundle
A-APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Conceptual	Communicating Reasoning

A-APR.B Major Cluster: Understand the relationship between zeros and factors of polynomials.

Standard	Rigor	SMP Bundle
A-APR.B.2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	Conceptual	Communicating Reasoning
A-APR.B. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Conceptual	Communicating Reasoning

A-APR.D Supporting Cluster: Rewrite rational expressions.

Standard	Rigor	SMP Bundle
A-APR.D.6 Rewrite simple rational expressions in different forms; write $\frac{a(x)}{b(x)}$ in the form $q(x)+\frac{r(x)}{b(x), ~ \text { where } a(x), b(x),}$ $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$. For example, in the same way one may view $\frac{11}{7}$ as $\frac{(7+4)}{7}=1+\frac{4}{7}$, one can view $\frac{(x+7)}{(x+3)}$ as	Communicating Reasoning	
$\frac{((x+3)+4)}{(x+3)}=1+\frac{4}{x+3}$		

Domain: A-CED Creating Equations \star

A-CED.A Supporting Cluster: Create equations that describe numbers or relationships.

Standard	Rigor	SMP Bundle
A-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. For example, if the speed of the river is r, write an expression for the time it takes to travel 5 kilometers upstream and an expression for the time it takes to travel 10 kilometers downstream.	Application	Conceptual Mathematical Modeling \& Data Analysis
A-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. For example, is this the graph of $g(x)=-x^{2}(x-2)$ or $h(x)=$ $x^{2}(x-2)$? Explain how you know.	Application	Conceptual Mathematical Modeling \& Data Analysis
A-CED.A.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Application	Conceptual
Mathematical		
Modeling \& Data		
Analysis		

Standard	Rigor	SMP Bundle
A-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	Procedural	Problem Solving
Mathematical Modeling \& Data Analysis		

Domain: A-REI Reasoning with Equations and Inequalities

A-REI.A Major Cluster: Understand solving equations as a process of reasoning and explain the reasoning.

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { A-REI.A.1 Explain each step in solving a simple equation } \\ \text { as following from the equality of numbers asserted at the } \\ \text { previous step, starting from the assumption that the } \\ \text { original equation has a solution. Construct a viable } \\ \text { argument to justify a solution method. }\end{array}$	Conceptual	$\begin{array}{l}\text { Communicating } \\ \text { Reasoning }\end{array}$
$\begin{array}{l}\text { A-REI.A.2 Solve simple rational and radical equations in } \\ \text { one variable, and give examples showing how extraneous } \\ \text { solutions may arise. }\end{array}$	Conceptual	Procedural

Modeling \& Data

Analysis\end{array}\right] \begin{array}{l}Communicating

Reasoning\end{array}\right]\)| Mathematical |
| :--- |
| Modeling \& Data |
| Analysis |

A-REI.B Supporting Cluster: Solve equations and inequalities in one variable.

Standard	Rigor	SMP Bundle
A-REI.B.4 Solve quadratic equations in one variable.	Conceptual	Problem Solving
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. b.Solve quadratic equations with real solutions using any method. Application	Mathematical Modeling \& Data Analysis	

A-REI.C Additional Cluster: Solve systems of equations.

Standard	Rigor	SMP Bundle
A-REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+$ $y^{2}=3$.	Procedural	Problem Solving
		Communicating Reasoning
Mathematical Modeling \& Data Analysis		

A-REI.D Major Cluster: Represent and solve equations and inequalities graphically.

Standard	Rigor	SMP Bundle
A-REI.D.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Procedural	Problem Solving

Standard	Rigor	SMP Bundle		
A-REI.D.11 Explain why the solution(s) of a system of equations is/ are the point(s) of intersection(s) on a coordinate plane. Find the solutions approximately. For example, using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are quadratic, rational, absolute value functions, polynomial, exponential, and logarithmic functions. \star	Application	Conceptual	Procedural	Prom Solving
:---				
Communicating				
A-REI.D.12 Graph and interpret (with the use of technology) the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.				
Application				

Conceptual Category: Functions

Domain: F-IF Interpreting Functions

F-IF.B Major Cluster: Interpret functions that arise in applications in terms of the context.

Standard	Rigor	SMP Bundle
F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximum and minimum; and symmetries. \star	Conceptual Procedural Application	Problem Solving Mathematical Modeling \& Data Analysis
F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
F-IF.B.6 Calculate and interpret the average rate of change of a nonlinear function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star	Conceptual	Problem Solving

F-IF.C Supporting Cluster: Analyze functions using different representations.

Standard	Rigor	SMP Bundle
F-IF.C. 7 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases. \star	Conceptual	
a.Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions.	Application	Problem Solving
braph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	Communicating Reasoning	
Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	Mathematical Modeling \& Data Analysis	
F-IF.C. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. For example, rewrite rational expressions to show the vertical transformation.	Procedural	Application

Updated 1/4/24

Standard	Rigor	SMP Bundle		
F-IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	Application	Conceptual	Problem Solving	Peasoning
:---				
Mathematical				
Remmunicating				
Modeling \& Data				
Analysis				

Domain: F-BF Building Functions

F-BF.A Major Cluster: Build a function that models a relationship between two quantities.

$\left.$| Standard | Rigor | SMP Bundle |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { F-FB.A.1b Write a function that describes a relationship } \\ \text { between two quantities. Combine standard function types } \\ \text { using arithmetic operations. For example, build a function } \\ \text { that models the temperature of a cooling body by adding a } \\ \text { constant function to a decaying exponential, and relate } \\ \text { these functions to the model. } \star\end{array}$ | Procedural | Application | \(\left.\begin{array}{l}Conceptual

Communicating

Reasoning

Mathematical

Modeling \& Data

Analysis\end{array} \right\rvert\, $$
\begin{array}{l}\text { Problem Solving } \\
\hline \begin{array}{l}\text { F-BF.A.2 Write arithmetic and geometric sequences both } \\
\text { recursively and with an explicit formula, use them to model } \\
\text { situations, and translate between the two forms. } \star\end{array} \\
\text { Conceptual } \\
\text { Procedural }\end{array}
$$ \begin{array}{l}Problem Solving

Communicating

Reasoning\end{array}\right]\)| Application |
| :--- |

F-BF.B Additional Cluster: Build new functions from existing functions.

Standard	Rigor	SMP Bundle
F-FB.B. 3 Identify the effect on linear and quadratic graphs of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
F-FB.B. 4 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 \times 3$ or $f(x)=\frac{(x+1)}{(x-1)}$ for $x \neq 1$.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

Domain: F-LE Linear, Quadratic, and Exponential Models \star

F-LE.A Supporting Cluster: Construct and compare linear, quadratic, and exponential models and solve problems.

Standard	Rigor	SMP Bundle		
$\begin{array}{l}\text { F-LE.A.2 Construct linear and exponential functions, } \\ \text { including arithmetic and geometric sequences, given a } \\ \text { graph, a description of a relationship, or two input-output } \\ \text { pairs (include reading these from a table). }\end{array}$	Procedural	$\begin{array}{l}\text { Mathematical } \\ \text { Modeling \& Data } \\ \text { Analysis }\end{array}$		
$\begin{array}{l}\text { F-LE.A.4 For exponential models, express as a logarithm } \\ \text { the solution to } a b^{c t}=d \text { where a, } c \text {, and } d \text { are numbers and } \\ \text { the base } b \text { is } 2,10, \text { or e; evaluate the logarithm using } \\ \text { technology. }\end{array}$	Conceptual	Procedural		
Problem Solving				
Communicating				
Reasoning			$]$	Mathematical
:---				
Modeling \& Data				
Analysis				

F-LE.B Supporting Cluster: Interpret expressions for functions in terms of the situation they model.

Standard	Rigor	SMP Bundle
F-LE.B. 5 Interpret the parameters in a linear or exponential function in terms of a context.	Conceptual	Mathematical Modeling \& Data Analysis

Domain: F-TF Trigonometric Functions

F-TF.A Additional Cluster: Extend the domain of trigonometric functions using the unit circle.

Standard	Rigor	SMP Bundle
F-TF.A. 1 Understand the radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
F-TF.A. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
F-TF.A. 3 Use special triangles to determine geometrically the values of sine, cosine for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine and cosine for $\pi-$ $x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

F-TF.B Additional Cluster: Model periodic phenomena with trigonometric functions.

Standard	Rigor	SMP Bundle
F-TF.B. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. \star	Conceptual	Problem Solving
Procedural	Communicating Reasoning Application	Mathematical Modeling \& Data Analysis

Conceptual Category: Statistics and Probability

 Domain: S-ID Interpreting Categorical and Quantitative Data \starS-ID.A Additional Cluster: Summarize, represent, and interpret data on a single count or measurement variable. \star

Standard	Rigor	SMP Bundle
$\begin{array}{l}\text { S-ID.A.4 Use the mean and standard deviation of a data } \\ \text { set to fit it to a normal distribution and to estimate } \\ \text { population percentages. Recognize that there are data } \\ \text { sets for which such a procedure is not appropriate. Use } \\ \text { calculators, spreadsheets, and tables to estimate areas } \\ \text { under the normal curve. } \star\end{array}$	Conceptual	Procedural

Communicating

Reasoning\end{array}\right]\)| Mathematical |
| :--- |
| Modeling \& Data |
| Analysis |

Domain: S-IC Making Inferences and Justifying Conclusions \star

S-IC.A Supporting Cluster: Understand and evaluate random processes underlying statistical experiments. \star

Standard	Rigor	SMP Bundle
S-IC.A. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. \star	Conceptual	Problem Solving
Procedural	Communicating Reasoning Application	
S-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, for example, Modeling \& Data using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? \star	Procedural	Application

S-IC.B Major Cluster: Make inferences and justify conclusions from sample surveys, experiments, and observational studies. \star

Standard	Rigor	SMP Bundle
S-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. \star	Conceptual	Problem Solving
	Application	Prommunicating Reasoning Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
S-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. \star	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
S-IC.B. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. \star	Conceptual	Procedural
Problem Solving		
Communicating		
Reasoning		
Application	Mathematical Modeling \& Data Analysis	
S-IC.B. 6 Evaluate reports based on data. \star	Conceptual	Problem Solving
Procedural	Communicating Reasoning	

Mathematics Standards for High School Elective Courses (Statistics, Precalculus, Calculus) Statistics and Probability

Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be straight forward if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account.

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.

Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn.

Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables.

Technology plays an important role in statistics and probability by making it possible to generate plots, regression functions, and correlation coefficients, and to simulate many possible outcomes in a short amount of time.

Connections to Functions and Modeling. Functions may be used to describe data; if the data suggest a linear, quadratic or exponential relationship, the relationship can be modeled with a
regression equation. The strength and direction of linear relationships can be expressed through a correlation coefficient.

Note: Cluster level emphases (for example, major, supporting, and additional designations) for this course are intentionally not included because the content is beyond the college and career readiness level for all students.

Statistics and Probability Overview

Interpreting Categorical and Quantitative Data $\boldsymbol{\star}$ (SID)

- Summarize, represent, and interpret data on a single count or measurement variable.
- Summarize, represent, and interpret data on two categorical and quantitative variables.
- Interpret linear models.

Making Inferences and Justifying Conclusions $\boldsymbol{\star}$ (SIC)

- Understand and evaluate random processes underlying statistical experiments.
- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

Conditional Probability and Rules of Probability $\boldsymbol{*}$ (SCP)

- Understand independence and conditional probability and use them to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Using Probability to Make Decisions (S-MD)

- Calculate expected values and use them to solve problems.
- Use probability to evaluate outcomes of decisions.

Conditional Probability and Rules of Probability $\boldsymbol{*}$ (S-CP)

- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Domain: S-ID Interpreting Categorical and Quantitative Data \star

S-ID.A Cluster: Summarize, represent, and interpret data on a single count or measurement variable.

Standard	Rigor	SMP Bundle
S-ID.A. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots). \star	Procedural	Mathematical Modeling \& Data Analysis
S-ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. \star	Conceptual	Mathematical Modeling \& Data Analysis
S-ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). \star	Conceptual	Mathematical Modeling \& Data
Analysis		

S-ID.B Cluster: Summarize, represent, and interpret data on two categorical and quantitative variables. \star

Standard	Rigor	SMP Bundle
S-ID.B.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. \star	Conceptual	Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
S-ID.B. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association.	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis

S-ID.C Cluster: Interpret linear models. \star

Standard	Rigor	SMP Bundle
S-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. \star	Conceptual Procedural Application	Problem Solving
S-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit. \star	Conceptual Procedural Application	Problem Solving
S-ID.C.9 Distinguish between correlation and causation. \star	Conceptual Procedural Application	Problem Solving

Domain: S-IC Making Inferences and Justifying Conclusions \star

S-IC.A Cluster: Understand and evaluate random processes underlying statistical experiments. \star

Standard	Rigor	SMP Bundle
S-IC.A. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. \star	Conceptual	Mathematical Modeling \& Data Analysis
S-IC.A. 2 Decide if a specified model is consistent with results from a given data-generating process, for example, using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? \star	Procedural	Application

S-IC.B Cluster: Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

Standard	Rigor	SMP Bundle
S-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. \star	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis
S-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. \star	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
S-IC.B. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. \star	Conceptual Procedural Application	Mathematical Modeling \& Data Analysis
S-IC.B. 6 Evaluate reports based on data. \star	Conceptual	Mathematical Modeling \& Data Analysis
S.IA.1 Conduct statistical investigations. \star	Application	Conceptual
a. Conduct observational studies. b. Conduct statistical experiments.	Procedural	Problem Solving Communicating Reasoning
Application	Mathematical Modeling \& Data Analysis	

Domain: S-CP Conditional Probability and Rules of Probability \star

S-CP.A Cluster: Understand independence and conditional probability and use them to interpret data. \star

Standard	Rigor	SMP Bundle
S-CP.A.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not.")	Conceptual Procedural Application	Problem Solving

Standard	Rigor	SMP Bundle
S-CP.A. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. \star	Conceptual Procedural Application	Problem Solving
S-CP.A. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. \star	Conceptual Procedural Application	Problem Solving
S-CP.A. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	Conceptual Procedural Application	Problem Solving
S-CP.A. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	Conceptual Procedural Application	Problem Solving

S-CP.B Cluster: Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Standard	Rigor	SMP Bundle
S-CP.B.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. \star	Conceptual Procedural Application	Problem Solving
S-CP.B.7 Apply the Addition Rule, P(A or B) $=\mathrm{P}(\mathrm{A})+$ P(B) $-\mathrm{P}(\mathrm{A}$ and B), and interpret the answer in terms of the model. \star	Conceptual	Problem Solving

Domain: S-MD Using Probability to Make Decisions \star

S-MD.A Cluster: Calculate expected values and use them to solve problems.

Standard	Rigor	SMP Bundle
S-MD.A.1 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions. \star	Conceptual Procedural Application	Problem Solving
S-MD.A.2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. \star	Conceptual Procedural Application	Problem Solving

Standard	Rigor	SMP Bundle
S-MD.A. 3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes. \star	Conceptual Procedural Application	Problem Solving
S-MD.A. 4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households? \star	Conceptual Procedural Application	Problem Solving

S-MD.B Cluster: Use probability to evaluate outcomes of decisions.

Standard	Rigor	SMP Bundle		
S-MD.B. W Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. \star	Conceptual	Problem Solving		
a. Find the expected payoff for a game of chance.	Application			
For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.				
b. Evaluate and compare strategies on the basis of				
expected values. For example, compare a high-				
deductible versus a low-deductible automobile				
insurance policy using various, but reasonable,				
chances of having a minor or a major accident.			\quad	
:---				

Updated 1/4/24

Standard	Rigor	SMP Bundle
S-MD.B.6 Use probabilities to make fair decisions. For example, drawing by lots, using a random number generator. \star	Conceptual Procedural Application	Problem Solving
S-MD.B.7 Analyze decisions and strategies using probability concepts (for example, product testing, medical testing, pulling a hockey goalie at the end of a game). \star	Conceptual	Problem Solving

Domain: S-CP Conditional Probability and Rules of Probability \star

S-CP.B Cluster: Use the rules of probability to compute probabilities of compound events in a uniform probability model. \star

Standard	Rigor	SMP Bundle
S-CP.B.8 Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{B}) \mid \mathrm{A})$ $=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$, and interpret the answer in terms of the model. \star	Conceptual Procedural Application	Problem Solving
S-CP.B.9 Use permutations and combinations to compute probabilities of compound events and solve problems. \star	Conceptual Procedural	Problem Solving

Domain: N-APR Arithmetic with Polynomials and Rational Expressions

N-APR.C: Use polynomial identities to solve problems.

Standard	Rigor	SMP Bundle		
N-APR.C. 5 Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.	Conceptual	Procedural		Communicating
:---				
Reasoning				

Pre-Calculus

The Precalculus course is one of the courses that students may choose as part of the pathway that prepares for technical careers as well as general college majors like Life Science, Health, Business and Social Science.

Students in Precalculus formalize and extend the mathematics they learned in Algebra 2 through the study of linear, exponential, power, logarithmic, and polynomial functions from an algebraic, graphical and numerical point of view; fitting functions to data; review of trigonometry applications and identities; and solutions to equations and systems of equations. Students apply mathematics to real-world problems, using newly learned skills to solve briefer applications and using skills familiar from previous grades and courses to complete more substantial modeling tasks. A Precalculus course should be designed to prepare students for success if they choose afterwards to take a Calculus course.

Note: Cluster level emphases (for example, major, supporting, and additional designations) for this course are intentionally not included because the content is beyond the college and career readiness level for all students.

Precalculus Overview

Clusters are listed below. The code, PC.N-CN denotes precalculus, numbers and quantity-complex number system.

The Complex Number System (N-CN)

- Perform arithmetic operations with complex numbers.
- Represent complex numbers and their operations on the complex plane.

Reasoning with Equations and Functions (A-REF)

- Solve and graph polynomial equations and functions.
- Solve and graph rational equations and functions.
- Solve and graph polar functions.

Interpreting Functions (F-IF)

- Recognize and Identify Function Families.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Building Functions (F-BF)

- Build new functions from existing functions.

Linear, Quadratic, and Exponential Models (F-LE)

- Evaluate and graph logarithmic equations and functions.
- Apply piecewise and composite functions to real-world situations.
- Apply conic functions to real-world situations.
- Apply sequences and series to real-world situations.

Trigonometric Functions (F-TF)

- Extend the domain of trigonometric functions using the unit circle.
- Model periodic phenomena with trigonometric functions.
- Prove and apply trigonometric identities.
- Solve application problems in trigonometry.

Similarity, Right Triangles, and Trigonometry (G-SRT)

- Apply trigonometry to general triangles.

Expressing Geometric Properties with Equations (G-GPE)

- Translate between the geometric description and the equation for a conic section.

Conceptual Category: Number and Quantity

Domain: N-CN The Complex Number System
PC.N-CN.A: Perform arithmetic operations with complex numbers.

Standard	Rigor	SMP Bundle
PC.N-CN.A.3 Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Conceptual	Communicating Reasoning

PC.N-CN.B: Represent complex numbers and their operations on the complex plane.

Standard	Rigor	SMP Bundle
PC.N-CN.B.4 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	Conceptual	Communicating Reasoning
$\left.\begin{array}{l}\text { PC.N-CN.B.5 Represent addition, subtraction, } \\ \text { multiplication, and conjugation of complex numbers } \\ \text { geometrically on the complex plane; use properties of } \\ \text { this representation for computation. For example, } \\ (-1+\sqrt{3 i} 3\end{array}\right)=8$ because $\left(-1+\sqrt{3 i}^{3}\right)$ has modulus 2		
and argument 120°.		

Conceptual Category: Algebra

Domain: A-REF Reasoning with Equations and Functions
PC.A-REF.A: Solve and graph polynomial equations and functions.

Standard	Rigor	SMP Bundle
PC-A-REF.A. 1 Identify the characteristics which constitute a polynomial function and the unique characteristics to its graph. For example, change and continuity.	Procedural	Problem Solving
PC-A-REF.A.2 Solve polynomial equations of each degree using various methods to find zeros, with and without technology.	Procedural	Problem Solving
PC-A-REF.A.3 Graph polynomial functions (using technology when above degree four). Be able to find and justify x-intercepts (zeros), y-intercept, domain, range, end behavior, number of extreme values, and shape for each degree of polynomial functions, including, quadratic (include standard form and vertex form), cubic (use a variety of methods including technology to find roots but know shape and end behavior without a graph), nth degree (make conclusions about shape, domain, continuity, and end behaviors.)	Conceptual	Problem Solving

PC.A-REF.B: Solve and graph rational equations and functions.

Standard	Rigor	SMP Bundle
PC.A-REF.B.1 Identify what constitutes a rational function and characteristics unique to its graph with particular emphasis on change.	Procedural	
Conceptual	Problem Solving	
PC.A-REF.B.2 Graph rational functions with and without technology. Identify and describe features such as x and y intercepts, domain and range, vertical and horizontal asymptotes, end behavior, and symmetry.	Procedural	Problem Solving

Standard	Rigor	SMP Bundle
PC.A-REF.B.3 Graph rational functions with and without technology. Identify and describe features such as x and y intercepts, domain and range, vertical and horizontal asymptotes, end behavior and its connection to limits, and symmetry.	Procedural	Problem Solving

PC.A-REF.C: Solve and graph polar functions.

Standard	Rigor	SMP Bundle
PC.A-REF.C. 1 Construct graphs of polar functions.	Procedural	Problem Solving
PC.A-REF.C.2 Determine the location of a point in the plane using both rectangular and polar coordinates.	Procedural	Problem Solving
PC.A-REF.C. 3 Describe characteristics of the graph of a polar function with particular attention to rates of change.	Procedural	Problem Solving

Conceptual Category: Functions

Domain: F-IF Interpreting Functions

PC-F-IF.D: Recognize and Identify Function Families.

Standard	Rigor	SMP Bundle
PC.F-IF.D.10 Recognize and classify functions into "families"" based upon their characteristics and behavior.	Conceptual	Communicating Reasoning
PC.F-IF.D. 11 Distinguish function families by observing their parameters and their effect on graphs: polynomial, rational, radical, absolute value, exponential, and logarithmic.	Conceptual	Communicating Reasoning

Domain: F-BF Building Functions

PC.F-BF.B: Build new functions from existing functions.

Standard	Rigor	SMP Bundle		
PC.F-BF.B.4 Find inverse functions.				
a. Verify by composition that one function is the inverse				
of another.				
b. Read values of an inverse function from a graph or a				
table, given that the function has an inverse.				
c.Produce an invertible function from a non-invertible function by restricting the domain.	Conceptual	Communicating Reasoning		
PC.F-BF.B. 5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.	Conceptual	Communicating Reasoning		
PC-AF.A. 7 Build new functions from existing ones. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.	Application	Procedural	Problem Solving	Mathematical
:---				
Modeling \& Data				
Analysis				

Domain: F-LE Linear, Quadratic, and Exponential Models

PC.F-LE.C: Evaluate and graph logarithmic equations and functions.

Standard	Rigor	SMP Bundle
PC.F-LE.C. 1 Be able to evaluate logarithms of bases from 2 to 10 which have integer solutions without technology.	Procedural	Problem Solving
PC.F-LE.C. 2 Understand the characteristics of common and natural logarithms.	Conceptual	Problem Solving
PC.F-LE.C. 3 Use the laws of logarithms to condense or expand logarithmic expressions, approximate the value of a logarithmic expression, and solve logarithmic equations.	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis
PC.F-LE.C. 4 Graph logarithmic functions, identifying characteristics unique to its graph. Describe features such as intercepts, domain, range, asymptotes, continuity and end behavior with connections to limits.	Conceptual Procedural	Problem Solving Communicating Reasoning
PC.F-LE.C. 5 Investigate transformations of logarithmic function and how the parameters of the function are evidenced in their graphs. Transformation to include shifts, reflection, and dilation (using a variety of methods including technology.)	Conceptual Procedural Application	Problem Solving Communicating Reasoning Mathematical Modeling \& Data Analysis

PC.F-LE.D: Apply piecewise and composite functions to real-world situations.

Standard	Rigor	SMP Bundle
PC.F-LE.D. 1 Understand and use sign analysis to determine positive and negative intervals of a function.	Procedural Conceptual	Problem Solving
PC.F-LE.D. 2 Apply the concept of rates of change to find and interpret the average rate of change of a function (presented graphically or symbolically) over a specified interval. Estimate the rate of change over a specified interval from a graph.	Procedural	Conceptual

PC.F-LE.E: Apply conics to real-world problems.

Standard	Rigor	SMP Bundle
PC.F-LE.E.1 Investigate real-world situations which involve conic sections. For example, orbital paths of planets (ellipses) and comets.	Procedural	Problem Solving
Application	Mathematical Modeling \& Data Analysis	

PC.F-LE.F: Apply sequences and series to real-world situations.

$\left.$| Standard | Rigor | SMP Bundle |
| :--- | :--- | :--- |
| PC.F-LE.F.1 Recognize that sequences are functions,
 sometimes defined recursively, whose domain is a subset of
 the integers. | Procedural | Problem Solving |
| PC.F-LE.F. 2 Find partial sums of arithmetic and geometric
 series and represent them using sigma notation. | Procedural | Problem Solving |
| PC.F-LE.F. 3 Model and solve real-world problems involving
 applications of sequences and series, interpret the solutions
 and determine whether the solutions are reasonable. | Procedural | Conceptual | | Problem Solving |
| :--- |
| Communicating |
| Reasoning | \right\rvert\, | Application |
| :--- |

Domain: F-TF Trigonometric Functions

PC.F-TF.A: Extend the domain of trigonometric functions using the unit circle.

Standard	Rigor	SMP Bundle
PC.F-TF.A.4 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed along the circumference in a counterclockwise direction.	Conceptual	Communicating Reasoning

PC.F-TF.B: Model periodic phenomena with trigonometric functions.

Standard	Rigor	SMP Bundle
PC.F-TF.B.6 Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	Conceptual	Communicating Reasoning

Standard	Rigor	SMP Bundle
PC.F-TF.B. 7 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.	Conceptual	Communicating Reasoning
PC.F-TF.B. 8 Prove the Pythagorean identity $\sin ^{2}(\theta)+$ $\cos ^{2}=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$.	Conceptual	Communicating Reasoning
PC.F-TF.B. 11 Given a point on the terminal side of any angle in standard position will determine the sine, cosine, tangent, cosecant, secant, and cotangent of the angle.	Procedural	Problem Solving
PC.F-TF.B. 12 Use special triangles in standard position to determine geometrically the values of sine, cosine, tangent, cosecant, secant, and cotangent for $\frac{\pi}{3}, \frac{\pi}{4}$ and $\frac{\pi}{6}$ over the domain of -2π to 2π.	Procedural	Problem Solving
PC.F-TF.B. 13 The student, given one of the six trigonometric functions in standard form, will a. Sketch the graph of the function for at least a one period interval, without technology. b. Identify the domain and the range of the function. c. Determine the amplitude, period, continuity, and asymptotes. d. Understand the impact of parameters in the equation and sketch its graph accurately. Parameters to address are: phase shift, vertical shift, or period change. e. Use symmetry and substitution to determine if the function is odd or even.	Procedural	Problem Solving
PC.F-TF.B. 14 Given a graph of at least one period of the sine, cosine, or tangent function, formulate the standard form of the equation.	Procedural	Problem Solving

Standard	Rigor	SMP Bundle
PC.F-TF.B.15 Choose trigonometric functions to model and/or interpret periodic phenomena with specified amplitude, frequency, and midline.	Procedural	Problem Solving
Conceptual	Communicating Reasoning Application	
Mothematical Modeling \& Data Analysis		

PC.F-TF.C: Prove and apply trigonometric identities.

Standard	Rigor	SMP Bundle
PC.F-TF.C.9 Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	Conceptual	Communicating Reasoning
PC.F-TF.C.10 Recognize, verify, and make substitutions using the basic trigonometric identities: reciprocal, Pythagorean, quotient for all six functions as well as addition, subtraction and double angle identities for sine, cosine, and tangent.	Procedural	Problem Solving
Conceptual	Communicating Reasoning	

PC.F-TF.D: Solve application problems in trigonometry.

Standard	Rigor	SMP Bundle
PC.F-TF.D.1 Solve application problems which involve:	Procedural	Problem Solving
a. Arc length and area of sectors in circles using radians and degree. b. Linear and angular velocity. c. Require the use of the law of sines and cosines, for example, bearing and surveying problems, resultant forces.	Application	

Standard	Rigor	SMP Bundle
PC.F-TF.D.2 Model problems involving triangles; use trigonometry to arrive at solutions, evaluate the solutions (using technology when needed), and interpret the solutions in terms of the context.	Procedural	Problem Solving
Conceptual	Communicating Reasoning	

Conceptual Category: Geometry

Domain: G-SRT Similarity, Right Triangles, and Trigonometry
PC.G-SRT.D: Apply trigonometry to general triangles.

Standard	Rigor	SMP Bundle
PC.G-SRT.A.9 Derive the formula $A=\frac{1}{2} a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.	Conceptual	Communicating Reasoning
PC.G-SRT.A.10 Prove the Laws of Sines and Cosines and use them to solve problems.	Conceptual	Communicating Reasoning
PC.G-SRT.A.11 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles. For example, surveying problems, resultant forces.	Conceptual	Communicating Reasoning

Domain: G-GPE Expressing Geometric Properties with Equations

PC.G-GPE.A: Translate between the geometric description and the equation for a conic section.

Standard	Rigor	SMP Bundle
PC.G-C.GPE.3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Use equations and graphs of conic sections to model real-world problems.	Conceptual	Communicating Reasoning

Calculus

The Calculus course is one of the courses that students may choose as part of the pathway that prepares for technical careers as well as general college majors like Life Science, Health, Business and Social Science.

Students in Calculus develop an understanding of the concepts of calculus and experience methods and applications. Through the emphasis on the unifying themes of derivatives, integrals, limits, approximation, and applications and modeling, the course is a cohesive whole rather than a collection of unrelated topics. These themes are developed using functions learned in prior courses such as Algebra 2 and Precalculus. The course emphasizes a multirepresentational approach with concepts, results, and problems being expressed graphically, numerically, analytically, and verbally. The connections among these representations are important. The focus of the course is neither manipulation nor memorization of an extensive taxonomy of functions, curves, theorems, or problem types. Thus, although familiarity with manipulation and computational competence are important outcomes, they are not the core of the course.

Technology should be used regularly to reinforce the relationships among the multiple representations of functions, to confirm written work, to implement experimentation, and to assist in interpreting results.

Note: Cluster level emphases (for example, major, supporting, and additional designations) for this course are intentionally not included because the content is beyond the college and career readiness level for all students.

Calculus Introduction

Clusters are listed below. The code, C.F-LC denotes calculus, functions-limits and continuity.

Limits and Continuity (F-LC)

- Interpret the behavior of functions using limits.
- Determine the continuity of functions.

Derivatives of Functions (F-DF)

- Apply the basic rules of differentiation.
- Differentiate composite functions.
- Interpret derivatives including those that involve instantaneous rates of change.

Application of Derivatives of Functions (F-DF)

- Use derivatives to understand the behavior of a function.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

- Apply the derivative to real-world problems.

Differential Equations (F-DE)

- Estimate, verify, and analyze solutions to differential equations.

Antiderivatives (Integrals) of Functions (F-AF)

- Calculate indefinite and definite integrals.
- Use a variety of techniques to find antiderivatives.
- Calculate derivatives and integrals of definite and indefinite.

Applications of Integrals (F-AI)

- Determine rates of change.
- Calculate areas and volumes of solids.

Series, Parametric, and Polar Coordinates (F-AI)

- Calculate and analyze Infinite Sequences and Series.
- Calculate and apply parametric equations.
- Convert and generalize polar coordinates.

Conceptual Category: Functions

Domain: F-LC Limits and Continuity

C.F-LC.A: Interpret the behavior of functions using limits.

Standard	Rigor	SMP Bundle
C.F-LC.A. 1 Understand the definition of a limit and represent limits analytically using correct notation. Given a function f, the limit of $f(x)$ as x approaches c is a real number R if $f(x)$ can be made arbitrarily close to R by taking x sufficiently close to c (but not equal to $c)$. If the limit exists and is a real number, then the common notation is $\lim _{x \rightarrow c} f(x)=L$.	Conceptual	Communicating Reasoning
C.F-LC.A. 2 Estimate limits, including one-sided, of functions using functions, tables, and graphs.	Conceptual	Communicating Reasoning
C.F-LC.A. 3 Calculate limits of sums, differences, products, quotients, and composite functions using equivalent expressions or limit theorems, such as the Squeeze Theorem.	Procedural	Mathematical Modeling \& Data Analysis
C-C.F-LC.A.4 Interpret limits of functions in real-world applications.	Procedural	Mathematical Modeling \& Data Analysis
C.F-LC.A. 5 Use limits at infinity to identify asymptotes and identify the end behaviors of functions.	Procedural	Mathematical Modeling \& Data Analysis
C.F-LC.A.6 Evaluate the limits of functions that result in indeterminate forms: e.g. using L'Hospital's rule.	Procedural	Mathematical Modeling \& Data Analysis

C.F-LC.B: Determine the continuity of functions.

Standard	Rigor	SMP Bundle
C.F-LC.B.1 Understand the limit definition of a function: Let $a \in \mathbb{R}$. We say that a real-valued function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.	Conceptual	Communicating Reasoning
C.F-LC.B. 2 Analyze functions for intervals, open or closed, of continuity or points of discontinuity from a given function, graph, or table.	Conceptual	Communicating Reasoning
C.F-LC.A.3 Identify points of discontinuity as removable or non-removable.	Conceptual	Mathematical Modeling \& Data Analysis
C.F-LC.A.4 Explain the behavior of a function on an interval using the Intermediate Value Theorem.	Conceptual	Mathematical Modeling \& Data Analysis

Domain: C.DF Derivatives of Functions

C.F-DF.A: Apply the basic rules of differentiation.

Standard	Rigor	SMP Bundle
C.F-DF.A.1 Understand the limit definition of a derivative at a point: The derivative of a function f at $\mathrm{x}=\mathrm{a}$ is $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ provided the limit exists.	Conceptual	Communicating Reasoning
C.F-DF.A. 2 Understand that if a function is differentiable at a point, then it is continuous at that point. In particular, if a point is not in the domain of f, then it is not in the domain of f^{\prime}.	Conceptual	Communicating Reasoning
C.F-DF.A.3 Identify the derivative of a function using appropriate strategies. For example, rules for sums, differences, products, quotients, and limits of functions.	Procedural	Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
C.F-DF.A.4 Identify higher order derivatives of a variety of functions.	Procedural	Mathematical Modeling \& Data Analysis
C.F-DF.A.5 Evaluate the derivatives of a variety of functions.	Procedural	Mathematical Modeling \& Data Analysis

C.F-DF.B: Differentiate composite functions.

Standard	Rigor	SMP Bundle
C.F-DF.B.1 Differentiate composite functions.	Procedural	Mathematical Modeling \& Data Analysis
C.F-DF.B.2 Determine the first and second derivatives of a function implicitly.	Procedural	Mathematical Modeling \& Data Analysis
C.F-DF.B.3 Solve and interpret related rate problems in applied contexts.	Procedural	Problem Solving
Application	Mathematical Modeling \& Data Analysis	

C.F-DF.C: Interpret derivatives including those that involve instantaneous rates of change.

Standard	Rigor	SMP Bundle
C.F-DF.C. 1 Compute the difference quotient for a given interval of a function, $\frac{f(x+h)-f(x)}{h}$ for $h \neq 0$.	Procedural	Communicating Reasoning

Updated 1/4/24

Standard	Rigor	SMP Bundle
C.F-DF.C.2 Determine the equation of a line tangent or normal to a curve at a given point.	Procedural	Problem Solving
C.F-DF.C.3 Interpret the meaning of a derivative as a rate of change within applied contexts, including rectilinear motion problems involving position, speed, velocity, and acceleration.	Conceptual	Application Remmunicate Reasoning
Mathematical Modeling \& Data Analysis		

Domain: C.AD Application of Derivatives of Functions

C.F-AD.A: Use derivatives to understand the behavior of a function.

Standard	Rigor	SMP Bundle
C.F-AD.A.1 Use the first derivative to determine where a function is increasing (or decreasing) on an interval.	Conceptual	Communicating Reasoning
C.F-AD.A.2 Analyze functions for extrema, absolute or relative from a given function, graph, or table.	Conceptual	Communicating Reasoning
C.F-AD.A.3 Use the second derivative to determine if a function is concave up (or concave down) on an interval and identify any points of inflection of the function.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AD.A.4 Use graphical, numerical, and analytical information from f ' and f ' to predict the behavior of f.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AD.A.5 Justify conclusions about functions by applying the Extreme Value Theorem.	Procedural	Communicating Reasoning

C.F-AD.B: Apply the derivative to real-world problems.

Standard	Rigor	SMP Bundle
C.F-AD.B.1 Calculate and interpret minimum and maximum values in applied contexts. For example, optimization problems.	Conceptual Application	Problem Solving
C.F-AD.B. 2 Justify conclusions about functions by applying the Mean Value Theorem over an interval.	Conceptual Application	Communicating Reasoning

Domain: C.DE Differential Equations

C.F-DE.A: Estimate, verify, and analyze solutions to differential equations.

Standard	Rigor	SMP Bundle
C.F-DE.A.1 Use derivatives to verify that a function is a solution to a given differential equation.	Conceptual Application	Communicating Reasoning Mathematical Modeling \& Data Analysis
C.F-DE.A.2 Estimate solutions to first order differential equations using slope fields and Euler's method.	Procedural	Mathematical Modeling \& Data Analysis
C.F-DE.A.3 Use antidifferentiation to find specific solutions to differential equations with given initial conditions including motion along a line, exponential growth and decay; and logistic growth.	Procedural	Mathematical Modeling \& Data Analysis

Domain: C.AF Antiderivatives (Integrals) of Functions

C.F-AF.A: Calculate indefinite and definite integrals.

Standard	Rigor	SMP Bundle
C.F-AF.A.1 Interpret and represent a definite integral as the limit of Riemann sums.	Conceptual Application	Communicating Reasoning
C.F-AF.A.2 Calculate the definite integral using geometric and numerical methods, such as a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, a trapezoidal sum, or Simpson's Rule.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AF.A.3 Understand and apply the Fundamental Theorem of Calculus to represent accumulation functions using definite integrals.	Procedural	Problem Solving
C.F-AF.A.4 Apply the Fundamental Theorem of Calculus to evaluate definite integrals for a variety of functions including polynomial, trigonometric, rational, radical, and inverse functions.	Procedural	Application

C.F-AF.B: Use a variety of techniques to find antiderivatives.

Standard	Rigor	SMP Bundle
C.F-AF.B.1 Understand and apply the Fundamental Theorem of Calculus to determine the antiderivative of functions.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AF.B.2 Determine the antiderivatives of functions using substitution and antidifferentiation by parts.	Procedural	Mathematical Modeling \& Data Analysis

Standard	Rigor	SMP Bundle
C.F-AF.B.3 Use partial fraction decomposition to find antiderivatives of rational functions.	Procedural	Mathematical Modeling \& Data Analysis

C.F-AF.C: Calculate derivatives and integrals of definite and indefinite.

Standard	Rigor	SMP Bundle
C.F-AF.C.1 Calculate derivatives and integrals (definite and indefinite) of exponential and logarithmic functions.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AF.C.2 Calculate derivatives and integrals (definite and indefinite) of composite functions which combine all function families.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AF.C.3 Calculate derivatives and integrals (definite and indefinite) of inverse trigonometric functions.	Procedural	Mathematical Modeling \& Data Analysis

Domain: Applications of Integrals

C.F-AI.A: Determine rates of change.

Standard	Rigor	SMP Bundle
C.F-AI.A.1 Determine the average value of a continuous function f over an interval $[a, b]$.	Procedural Application	Problem Solving
C.F-AI.A.2 Determine values for positions and rates of change using definite integrals in problems involving rectilinear motion.	Procedural	Problem Solving

Standard	Rigor	SMP Bundle
C.F-Al.A.3 Calculate derivatives and integrals (definite and indefinite) of inverse trigonometric functions.	Procedural Application	Problem Solving

C.F-AI.B: Calculate areas and volumes of solids.

Standard	Rigor	SMP Bundle
C.F-AI.B.4 Calculate areas in the plane using the definite integral, using a sum of two or more definite integrals, or by evaluating a definite integral of the absolute value of the difference of two functions.	Procedural	Application Mathematical Modeling \& Data Analysis
C.F-AI.B. 5 Calculate volumes of solids with known cross sections using definite integrals and the area formulas for these shapes.	Procedural	Mathematical Modeling \& Data Analysis
C.F-AI.B. 6 Calculate areas in the plane using the definite integral, using a sum of two or more definite integrals, or by evaluating a definite integral of the absolute value of the difference of two functions.	Procedural	Application Modeling \& Data Analysis
C.F-AI.B. 7 Calculate volumes of solids of revolution around the x- or y-axis by using definite integrals with the disc method, washer method, or cylindrical shell method.	Application	Anocedural Analysis
Mathematical Data		
C.F-AI.B. 7 Determine the length of a curve in the plane defined by a function, using a definite integral.	Procedural	Mathematical Modeling \& Data Analysis

Domain: Series, Parametric, and Polar Coordinates

C.F-SP.A: Calculate and analyze Infinite Sequences and Series.

Standard	Rigor	SMP Bundle
C.F-SP.A.1 Understand an infinite series of numbers converges to a real number S (or has sum S), if and only if the limit of its sequence of partial sums exists and equals S.	Procedural	Mathematical Modeling \& Data Analysis
C.F-SP.A.2 Determine whether a series converges or diverges, by applying appropriate tests such as: the nth term test, Integrals test for convergence, comparison test, alternating series test, or ratio test.	Application	Procedural Analysis

C-SP.B: Calculate and apply parametric equations.

Standard	Rigor	SMP Bundle
C.F-SP.B.1 Convert between parametrically defined functions and conic sections or rectangular functions.	Conceptual	Mathematical Modeling \& Data Analysis
C.F-SP.B.2 Apply parametric equations to contexts.	Procedural	Mathematical Modeling \& Data Analysis
C.F-SP.B.3 Calculate derivatives and antiderivatives of parametrically defined functions.	Procedural	Problem Solving

C.F-SP.C: Convert and Generalize Polar Coordinates.

Standard	Rigor	SMP Bundle
C.F-SP.C.1 Convert between polar and Cartesian coordinates.	Procedural	Mathematical Modeling \& Data Analysis

Updated 1/4/24

Standard	Rigor	SMP Bundle
C.F-SP.C.2 Use the conversion formulas to rewrite equations of graphs in their alternate forms.	Procedural	Mathematical Modeling \& Data Analysis
C.F-SP.C.3 Recognize that some graphs are more easily described in polar coordinates whereas others are more easily described in Cartesian coordinates.	Conceptual	Mathematical Modeling \& Data Analysis
C.F-SP.C.4 Generalize polar equations for circles and roses.	Conceptual	Mathematical Modeling \& Data Analysis

Glossary

Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range $0-5,0-10,0-20$, or $0-100$, respectively. Example: $8+2=10$ is an addition within $10,14-5=9$ is a subtraction within 20 , and $55-18=37$ is a subtraction within 100.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another.
Example: $3 / 4$ and $-3 / 4$ are additive inverses of one another because $\frac{3}{4}+(-3 / 4)=(-3 / 4)+3 / 4$ $=0$.

Algorithm. A step by step procedure used for solving a problem or performing a calculation.
Associative property of addition. See Table 3 in this Glossary.
Associative property of multiplication. See Table 3 in this Glossary.
Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.

Box plot. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle 50% of the data.

Cluster. Groups of related standards.
Coherence. How the mathematical ideas build upon each other within a grade level and across grade levels.

Commutative property. See Table 3 in this Glossary.
Complex fraction. A fraction $\frac{A}{B}$ where A and/or B are fractions (B nonzero).
Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. See also: computation strategy.

Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. See also: computation algorithm.

Conceptual category. Categories for high school standards that span across multiple courses.
Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations).

Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can
find the total by counting on-pointing to the top book and saying "eight," following this with "nine, ten, eleven. There are eleven books now."

Curriculum. Organized plan of instruction comprised of a sequence of instructional units that engages students in mastering the standards.

Domain. Groups of related clusters.
Dot plot. See: line plot.
Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor.

Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of powers of ten. For example, $643=600+40+3$.

Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective probabilities.

First quartile. For a data set with median M, the first quartile is the median of the data values less than M. Example: For the data set $\{1,3,6,7,10,12,14,15,22,120\}$, the first quartile is 6 . See also: median, third quartile, interquartile range.

Fluency. Ability to apply procedures efficiently, flexibly, and accurately including fact fluency, computational fluency, and procedural fluency.

Focus. $65-85 \%$ of class time is devoted to the major work of the grade.
Fraction. A number expressible in the form a / b where a is a whole number and b is a positive whole number. (The word fraction in these standards always refers to a non-negative number.) See also: rational number.

Identity property of $\mathbf{0}$. See Table 3 in this Glossary.
Independently combined probability models. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair.

Integer. A number expressible in the form a or -a for some whole number a.
Interquartile range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set \{1, 3, $6,7,10,12,14,15,22,120\}$, the interquartile range is $15-6=9$. See also: first quartile, third quartile.

Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.

Mathematical shifts. Focus, Coherence and Rigor.

Mathematics of Information Processing and the Internet (IA). The Internet is everywhere in modern life. To be informed consumers and citizens in the information-dense modern world permeated by the Internet, students should have a basic mathematical understanding of some of the issues of information processing on the Internet. For example, when making an online purchase, mathematics is used to help you find what you want, encrypt your credit card number so that you can safely buy it, send your order accurately to the vendor, and, if your order is immediately downloaded, as when purchasing software, music, or video, ensure that your download occurs quickly and error-free. Essential topics related to these aspects of information processing are basic set theory, logic, and modular arithmetic. These topics are not only fundamental to information processing on the Internet, but they are also important mathematical topics in their own right with applications in many other areas.

Mathematics of Voting (IA). The instant-runoff voting (IRV), the Borda method (assigning points for preferences), and the Condorcet method (in which each pair of candidates is run off head to head) are all forms of preferential voting (rank according to your preferences, rather than just voting for your single favorite candidate).

Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list. Example: For the data set $\{1,3,6,7,10$, $12,14,15,22,120\}$, the mean is 21 .

Mean absolute deviation. A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values. Example: For the data set $\{2,3,6,7,10,12,14,15,22,120\}$, the mean absolute deviation is 20 .

Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list-or the mean of the two central values, if the list contains an even number of values. Example: For the data set $\{2,3,6,7,10$, $12,14,15,22,90\}$, the median is 11 .

Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: 72 $\div 8=9$.

Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: $3 / 4$ and $4 / 3$ are multiplicative inverses of one another because $3 / 4 \times 4 / 3=$ $4 / 3 \times 3 / 4=1$.

Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.

Objective or Outcome. What a student is able to do as a result of completing a learning experience (observable and measurable).

Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by $5 / 50=10 \%$ per year.

Probability distribution. The set of possible values of a random variable with a probability assigned to each.

Properties of equality. See Table 4 in this Glossary.
Properties of inequality. See Table 5 in this Glossary.
Properties of operations. See Table 3 in this Glossary.
Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).

Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1 . See also: uniform probability model.

Progressions. Narrative documents describing the development of a topic across a number of grade levels, informed both by research on children's cognitive development and by the logical structure of mathematics.

Random variable. An assignment of a numerical value to each outcome in a sample space.
Rational expression. A quotient of two polynomials with a non-zero denominator.
Rational number. A number expressible in the form a / b or $-a / b$ for some fraction a / b. The rational numbers include the integers.

Rectilinear figure. A polygon all angles of which are right angles.
Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are here assumed to preserve distances and angle measures.

Repeating decimal. The decimal form of a rational number. See also: terminating decimal.
Rigor. Pursue conceptual understanding, procedural skill and fluency, and application with equal intensity,

Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.

Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot.

Similarity transformation. A rigid motion followed by a dilation.
Standard. Broad learning goals articulating what students should know, understand and be able to do over a given time.

Strategies. Flexible approaches to solve a problem using properties of operations and place value.

Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model.

Terminating decimal. A decimal is called terminating if its repeating digit is 0 .
Third quartile. For a data set with median M, the third quartile is the median of the data values greater than M. Example: For the data set $\{2,3,6,7,10,12,14,15,22,120\}$, the third quartile is 15. See also: median, first quartile, interquartile range.

Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well.

Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model.

Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.

Vertex-Edge Graphs (IA). Vertex-edge graphs are diagrams consisting of vertices (points) and edges (line segments or arcs) connecting some of the vertices. Vertex-edge graphs are also sometimes called networks, discrete graphs, or finite graphs. A vertex-edge graph shows relationships and connections among objects, such as in a road network, a telecommunications network, or a family tree. Within the context of school geometry, which is fundamentally the study of shape, vertex-edge graphs represent, in a sense, the situation of no shape. That is, vertex-edge graphs are geometric models consisting of vertices and edges in which shape is not essential, only the connections among vertices are essential. These graphs are widely used in business and industry to solve problems about networks, paths, and relationships among a finite number of objects - such as, analyzing a computer network; optimizing the route used for snow plowing, collecting garbage, or visiting business clients; scheduling committee meetings to avoid conflicts; or planning a large construction project to finish on time.

Visual fraction model. A tape diagram, number line diagram, or area model.
Whole numbers. The numbers $0,1,2,3, \ldots$.

Table 1. Common addition and subtraction situations. ${ }^{1}$

	Results Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=?$	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $?-2=3$
	Total Unknown	Addend Unknown	Both Addends Unknown ${ }^{1}$
Put Together/ Take Apart ${ }^{2}$	Three red apples and two green apples are on the table. How many apples are on the table? $3+2=?$	Five apples are on the table. Three are red and the rest are green. How many apples are green? $3+?=5,5-3=?$	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? $\begin{aligned} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \\ & 5=2+3,5=3+2 \end{aligned}$
	Difference Unknown	Bigger Unknown	Smaller Unknown
Compare ${ }^{3}$	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy? ("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? $2+?=5,5-2=?$	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? $2+3=?, 3+2=?$	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? $5-3=?, ?+3=5$

${ }^{1}$ These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as.
${ }^{2}$ Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10 .
${ }^{3}$ For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

Table 2. Common multiplication and division situations. ${ }^{6}$

	Unknown Product $3 \times 6=?$	Group Size Unknown ("How many in each group?" Division) $3 \times ?=18, \text { and } 18 \div 3=?$	Number of Groups Unknown ("How many groups?" Division) $? \times 6=18, \text { and } 18 \div 6=?$
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all? Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	If 18 plums are to be packed 6 to a bag, then how many bags are needed? Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays, ${ }^{4}$ Area ${ }^{5}$	There are 3 rows of apples with 6 apples in each row. How many apples are there? Area example. What is the area of a 3 cm by 6 cm rectangle?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
Compare	A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost? Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost? Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat? Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$\mathrm{a} \times \mathrm{b}=$?	$a \times ?=p$, and $p \div a=$?	$? \times \mathrm{b}=\mathrm{p}$, and $\mathrm{p} \div \mathrm{b}=$?

${ }^{4}$ The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.
${ }^{5}$ Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.
${ }^{6}$ The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

Table 3. The properties of operations. Here a, b and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system, and the complex number system.

$$
\begin{gathered}
(a+b)+c=a+(b+c) \\
a+b=b+a \\
a+0=0+a=a
\end{gathered}
$$

For every a there exists $-a$ so that $a+(-a)=(-a)+a=0$.

$$
(a \times b) \times c=a \times(b \times c)
$$

$$
a \times b=b \times a
$$

$$
a \times 1=1 \times a=a
$$

For every a $\neq 0$ there exists $1 / a$ so that $a \times 1 / a=1 / a \times a=1$. $a \times(b+c)=a \times b+a \times c$

Table 4. The properties of equality. Here a, b and c stand for arbitrary numbers in the rational, real, or complex number systems.

> Reflexive property of equality Symmetric property of equality
> Transitive property of equality
> Addition property of equality
> Subtraction property of equality Multiplication property of equality Division property of equality Substitution property of equality

Table 5. The properties of inequality. Here a, b and c stand for arbitrary numbers in the rational or real number systems.

Exactly one of the following is true: $a<b, a=b, a>b$.
If $a>b$ and $b>c$ then $a>c$.
If $a>b$, then $b<a$.
If $a>b$, then $-a<-b$.
If $a>b$, then $a \pm c>b \pm c$.
If $a>b$ and $c>0$, then $a \times c>b \times c$.
If $a>b$ and $c<0$, then $a \times c<b \times c$.
If $a>b$ and $c>0$, then $a \div c>b \div c$.
If $a>b$ and $c<0$, then $a \div c<b \div c$.

Appendix: Works Consulted

ACT College Readiness Benchmarks ${ }^{\text {TM }}$
ACT College Readiness Standards ${ }^{\text {TM }}$
ACT National Curriculum Survey ${ }^{\text {™ }}$

Achieve the Core 2023. "Mathematics: Focus by Grade Level" Accessed April 27, 2023. https://achievethecore.org/category/774/mathematics-focus-by-grade-level.

Achievement Network 2023. "Targeting aspects of rigor in math instruction" Accessed July 20, 2023.
https://www.achievementnetwork.org/lff-aspects-of-rigor-in-math-instruction.
Bargagliotti, Anna and Christine Franklin. 2020. Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II): A Framework for Statistics and Data Science Education. Alexandria, VA: American Statistical Association.

Adding it Up: Helping Children Learn Mathematics. National Research Council, Mathematics Learning Study Committee, 2001.

Advanced Placement Calculus, Statistics and Computer Science Course Descriptions. College Board, 2023.

Aligning Postsecondary Expectations and High School Practice: The Gap Defined (ACT: Policy Implications of the ACT National Curriculum Survey Results 2005-2006).

Bliss, Karen, and Jessica Libertini. 2016. "What is Mathematical Modeling?" In Guidelines for Assessment and Instruction in Mathematical Modeling Education (GAIMME). 7-22. United States of America: Consortium for Mathematics and Its Applications (COMAP, Inc.) and Society for Industrial and Applied Mathematics (SIAM).

Boaler, Jo. 2016. Mathematical Mindsets. San Francisco: Jossey-Bass.
Boston, Melissa., Dillion Frederick., Smith, Margret S., Miller, Stephen. 2017. Taking Action: Implementing Effective Mathematics Teaching Practices Grades 9-12. Reston: NCTM, National Council of Teachers of Mathematics.

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., \& Empson, S. B. (2015). Children's Mathematics: Cognitively Guided Instruction. Portsmouth, NH: Heinemann.

Clements, D. H., \& Sarama, J. (2014). Learning and teaching early math: The learning trajectories approach. New York: Routledge.

College Board Standards for College Success: Mathematics and Statistics. College Board, 2006.

Common Core Standards Writing Team. 2019. "Progressions for the Common Core State Standards for Mathematics" (draft February 7, 2019). Tucson: Institute for Mathematics and Education, University of Arizona.

Content Specifications for the Summative Assessment of the Common Core State Standards for Mathematics. Access April 27, 2023. https://portal.smarterbalanced.org/library/en/mathematics-content-specifications.pdf

Condition of Education, 2023: U.S. Department of Education, 2023.
Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence. National Council of Teachers of Mathematics, 2006.

Erikson Institute. 2014.Big Ideas of Early Mathematics, What Teachers of Young Children Need to Know. Boston, MA: Pearson.

Focus in High School Mathematics: Reasoning and Sense Making. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

Foundations for Success: The Final Report of the National Mathematics Advisory Panel. U.S. Department of Education: Washington, DC, 2008.

Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report: A PreK-12 Curriculum Framework.

Huinker, DeAnn and Victoria Bill. 2017. Taking Action: Implementing Effective Mathematics Teaching Practices K- Grade 5. Reston: NCTM, National Council of Teachers of Mathematics.

International Baccalaureate, Mathematics Standard Level, 2023.
Iowa Achievement Gaps Legislative Report, June 1, 2022
Leinwand, S. Accessible Mathematics, Ten Instructional Shifts That Raise Student Achievement. 2009. Portsmouth, NH: Heinemann

Levi, L., \& Empson, S. B. 2016. Extending Children's Mathematics, Fractions and Decimals. Portsmouth, NH: Heinemann.

Massachusetts Department of Elementary and Secondary Education. 2017. Accessed April 2,2023.
https://www.doe.mass.edu/frameworks/math/2017-06.pdf.
National Assessment of Educational Progress. Accessed March 15, 2023. https://nces.ed.gov/nationsreportcard/.

National Assessment Governing Board, Mathematics Framework for the 2009 National Assessment of Educational Progress. U.S. Department of Education, 2008.

National Council of Teachers of Mathematics (NCTM). 2020. Catalyzing Change in Early Childhood and Elementary Mathematics: Initiating Critical Conversations. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

National Council of Teachers of Mathematics (NCTM). 2018. Catalyzing Change in High School Mathematics: Initiating Critical Conversations. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

National Council of Teachers of Mathematics (NCTM). 2020. Catalyzing Change in Middle School Mathematics: Initiating Critical Conversations. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

National Council of Teachers of Mathematics (NCTM). 2014. Principles to Actions. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

National Council of Teachers of Mathematics (NCTM). 2017. Enhancing Classroom Practice with Research behind Principles to Actions. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

National Governors Association Center for Best Practices, Council of Chief State School Officers. 2010. Common Core State Standards Mathematics. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.

National Mathematics Advisory Panel (NMAP). 2008. "Foundations for Success: The Final Report of the National

Mathematics Advisory Panel." Washington, DC: U.S. Department of Education. Accessed February 2021.
http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf.
The Opportunity Myth, 2023. Accessed March 20, 2023.
https://tntp.org/publications/view/the-opportunity-myth.
Program for International Student Assessment (PISA), 2023. Accessed April 2, 2023.
https://nces.ed.gov/surveys/pisa/
Sarama, J., \& Clements, D. H. 2016. Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.

The State of State Standards Post-Common Core, 2018. Accessed February 1,2023. https://fordhaminstitute.org/national/research/state-state-standards-post-common-core.

Smith, Margret S., Stein, Mary Kay. 2018. 5 Practices for Orchestrating Productive Mathematics Discourse. Second Edition. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

Smith, Margret S., Steele, Michael D., Raith, Mary Lynn. 2017. Taking Action: Implementing Effective Mathematics Teaching Practices Grades 6-8. Reston: NCTM, National Council of Teachers of Mathematics, Inc.

Student Achievement Partners. 2016. Coherence. Accessed March 17, 2023. https://achievethecore.org/page/1088/coherence.

Teague, Daniel, Rachel Levy, and Kathleen Fowler. 2016. "The GAIMME Report: Mathematical Modeling in the K-16 Curriculum." In Annual Perspectives in Mathematics Education:

Mathematical Modeling and Modeling Mathematics. 253-261. Reston: The National Council of Teachers of Mathematics, Inc.

Trends in International Mathematics and Science Study (TIMSS), Accessed July 18, 2023.
https://nces.ed.gov/timss/
Van de Walle, J. A., Karp, K., \& Bay- Williams, J. M. (2010). Elementary and Middle School Mathematics: Teaching Developmentally (Seventh ed.). Boston: Allyn and Bacon.

Williams, Jennifer-Bay., Kling. (2010). Math Fact Fluency. Alexandria: ASCD, \& Reston: NCTM, National Council of Teachers of Mathematics.

[^0]: ${ }^{1}$ https://nap.nationalacademies.org/catalog/9822/adding-it-up-helping-children-learn-mathematics

