

with a problem, I can make a plan, carry out my plan, and evaluate its success.

Make sense of problems and persevere in solving them.

BEFORE...

EXPLAIN the problem to myself.

Have I solved a problem like this before?

ORGANIZE INFORMATION...

- What is the question I need to answer?
- What is given?
- What is not given?
- What are the relationships between known and unknown quantities?
- What tools will I use?
- What prior knowledge do I have to help me?

DURING ...

PERSEVERE

MONITOR my work

CHANGE MY PLAN if it isn't working out

ASK MYSELF, "Does this make sense?"

AFTER...

CHECK

- Is my answer correct?
- How do my representations connect to my solution?

EVALUATE

- · What worked/didn't work?
- · What other strategies were used?
- How was my solution similar or different from my classmates'?

Reason abstractly and quantitatively.

CONTEXTUALIZE 2.5 X 3 = 7.5

Sam walked 2.5 Miles per day for 3 days.

How many total miles did he walk?

DECONTEXTUALIZE

Sam walked 2.5 miles per day for 3 days. How many total miles did he walk?

 $2.5 \times 3 = 7.5$

I can contextualize numbers, decontextualize words, and use reasoning habits to help me make sense of problems.

REASONING HABITS

- 1) Make an understandable representation of the problem.
 - 2) Think about the units involved.
 - 3) Pay attention to the meaning of the numbers.
 - 4) Use the properties of operations or objects.

I can make conjectures and critique the mathematical thinking of others.

CONSTRUCT VIABLE ARGUMENTS AND CRITIQUE THE REASONING OF OTHERS.

I CAN CONSTRUCT, JUSTIFY, AND COMMUNICATE ARGUMENTS BY...

- Considering context
- Using examples and non-examples
- Using objects, drawings, diagrams and actions

I CAN CRITIQUE THE REASONING OF OTHERS BY ...

- Listening
- Comparing arguments
- Identifying flawed logic
- Asking questions to clarify or improve arguments

I can recognize math in everyday life and use math I know to solve everyday problems.

MODEL WITH MATHEMATICS.

/ CAN...

- Make assumptions and estimate to make complex problems easier
- Identify important quantities and use tools to show their relationships
- Evaluate my answer and make changes if neededs

USE APPROPRIATE TOOLS STRATEGICALLY.

I KNOW HOW AND WHEN TO USE MATH TOOLS.

х	Υ
1	100
2	200
3	300

I CAN REDSON: "DID THE TOOL I USED GIVE ME AN ANSWER THAT MAKES SENSE?"

I can use certain tools to help me explore and deepen my math understanding.

ATTEND TO PRECISION.

PROBLEM SOLVING

- I can calculate accurately.
- I can calculate efficiently.
- My answer matches what the problem asked me to do-estimate or find an exact answer.

COMMUNICATING

- I can SPEAK, READ, WRITE, and LISTEN mathematically.
- I can correctly use...
 - Math symbols
 - Math vocabulary
 - Units of measure

I can use precision when solving problems and communicating my ideas.

I can see and understand how numbers and spaces are organized and put together as parts and wholes.

LOOK FOR AND MAKE USE OF STRUCTURE.

NUMBERS. FOR EXAMPLE

- Base 10 structure
- Operations and properties
- Terms, coefficients, exponents

10 + 3

13 x 15 (10 + 3) x (10+5) 100 + 30 + 50 + 15 195

SPACES. FOR EXAMPLE

- Dimension
- Attributes
- Location
- Transformation

LOOK FOR AND EXPRESS REGULARITY IN REPEATED REASONING.

EXAMPLE:

I have a container of yogurt that is ¾ full. One serving of yogurt is ¼ of the container. How many servings are left in the container?

(THINK: How many 1/4's are in 3/4's?)

I can notice that ¼ is repeated and draw a model to figure out the number of servings left in the container.

Once I understand division of fractions, I can use a short cut to solve it like this.

$$\frac{3}{4} \div \frac{1}{4} = \frac{3}{4} \times \frac{4}{1} \implies \frac{3}{4} \times \frac{4}{1} = \frac{12}{4} \implies \frac{12}{4} = \frac{3}{1} \implies \frac{3}{1} = 3$$

AS I WORK ...

...I think about what I'm trying to figure out while I pay attention to the details...

...I evaluate if my results are reasonable.

I can notice when calculations are repeated. Then, I can find more general methods and short cuts.