Make Sense of Problems and Persevere in Solving Them.

When presented with a problem, I can make a plan, carry out my plan, and check its success.

BEFORE

EXPLAIN the problem to myself.

MAKE A PLAN to solve the problem

- · What is the question?
- · What do I know?
- What do I need to find out?
- What tools/strategies will I use?

DURING

PERSEVERE (Stick to it!)
MONITOR my work
ASK myself, "Does this
make sense?"
CHANGE my plan if it isn't
working out

AFTER

CHECK

- Is my answer correct?
- How do my representations connect to my solution?

EVALUATE

- · What worked/didn't work?
- How was my solution similar or different from my classmates'?

Reason Abstractly and Quantitatively.

I can use numbers, words, and reasoning habits to help me make sense of problems.

Contextualize (Numbers to Words)

$$\frac{1}{2} \times 6 = 3$$

Mary practices the piano ½ hour a day for 6 days. How many total hours does she practice?

Decontextualize (Words to Numbers)

Mary practices the piano ½ hour a day for 6 days. How many total hours does she practice?

½ x 6=3

Reasoning Habits: 1) Make an understandable representation of the problem. 2) Think about the units involved.

3) Pay attention to the meaning of the numbers. 4) Use the properties of operations or objects.

Construct Viable Arguments and Critique the Reasoning of Others.

I can make logical arguments and respond to the mathematical thinking of others.

I can make and present arguments by...

- using objects, drawings, diagrams and actions
- using examples and non-examples
- relating to contexts

I can analyze the reasoning of others by...

- listening
- asking and answering questions
- comparing strategies and arguments

Model with Mathematics.

I can recognize math in everyday life and use math I know to solve problems.

My box turtle is getting a new tank. He is 5 1/2" long and 3" tall. One side length of the tank needs to be 5 times his length. How long will the length of the tank need to be?

I will use the next bigger (whole) number. Find important numbers.

Turtle: About 6" long Tank: 5 times the length

of the turtle

I thought about the problem again and a 30" side length on the tank makes sense!

Think about the relationship to find an answer.

The tank (30") is 5 times bigger than the turtle length (6").

Turtle Length (in)	Tank Length (in)
4	20
5	25
6	30
7	35
8	40

Use tools to show relationships.

Use Appropriate Tools Strategically.

I can use certain tools to help me explore and deepen my math understanding.

I know **HOW** and **WHEN** to use math tools.

I can reason: "Did the tool
I used give me an answer
that makes sense?"

Attend to Precision.

I can be precise when solving problems and clear when communicating my ideas.

Mathematicians communicate with others using...

Symbol: Equal (the same as)

48 inches = 4 feet

units of measure

- math vocabulary with clear definitions
- symbols that have meaning
- context labels
- · units of measure
- calculations that are accurate and efficient.

Look for and Make Use of Structure.

I can see and understand how numbers and shapes are put together as parts and wholes.

Look for and Express Regularity in Repeated Reasoning.

I can notice when calculations are repeated. Then, I can find more general methods and short cuts.

As I Work...

I think about what I'm trying to figure out while I pay attention to the details.

I evaluate if my results are reasonable.

There are many ways to decompose 3/8 because it is composed of repeated 1/8's. I CAN...

draw a whole and shade in three 1/8's parts.

add eigths.

count by eighths (one-eighth, two eighths, three eighths)

3/8 = 1/8+1/8+1/8

3/8 = 1/8, 1/8, 1/8

jump three 1/8 size jumps on a number line.

